ﻻ يوجد ملخص باللغة العربية
We prove that a right angled Coxeter group with chromatic number n can be embedded in a bilipschitz way into the product of n locally finite trees. We give applications of this result to various embedding problems and determine the hyperbolic rank of products of exponentially branching trees.
An odd Coxeter group $W$ is one which admits a Coxeter system $(W,S)$ for which all the exponents $m_{ij}$ are either odd or infinity. The paper investigates the family of odd Coxeter groups whose associated labeled graphs $mathcal{V}_{(W,S)}$ are tr
We use probabilistic methods to prove that many Coxeter groups are incoherent. In particular, this holds for Coxeter groups of uniform exponent > 2 with sufficiently many generators.
Despite the significance of the notion of parabolic closures in Coxeter groups of finite ranks, the parabolic closure is not guaranteed to exist as a parabolic subgroup in a general case. In this paper, first we give a concrete example to clarify tha
We show that for a large class $mathcal{W}$ of Coxeter groups the following holds: Given a group $W_Gamma$ in $mathcal{W}$, the automorphism group ${rm Aut}(W_Gamma)$ virtually surjects onto $W_Gamma$. In particular, the group ${rm Aut}(G_Gamma)$ is