ﻻ يوجد ملخص باللغة العربية
We show that for a large class $mathcal{W}$ of Coxeter groups the following holds: Given a group $W_Gamma$ in $mathcal{W}$, the automorphism group ${rm Aut}(W_Gamma)$ virtually surjects onto $W_Gamma$. In particular, the group ${rm Aut}(G_Gamma)$ is virtually indicable and therefore does not satisfy Kazhdans property (T). Moreover, if $W_Gamma$ is not virtually abelian, then the group ${rm Aut}(W_Gamma)$ is large.
We show that the automorphism group of a graph product of finite groups $Aut(G_Gamma)$ has Kazhdans property (T) if and only if $Gamma$ is a complete graph.
We give a partial solution to a long-standing open problem in the theory of quantum groups, namely we prove that all finite-dimensional representations of a wide class of locally compact quantum groups factor through matrix quantum groups (Admissibil
The superextension $lambda(X)$ of a set $X$ consists of all maximal linked families on $X$. Any associative binary operation $*: Xtimes X to X$ can be extended to an associative binary operation $*: lambda(X)timeslambda(X)tolambda(X)$. In the paper w
We use probabilistic methods to prove that many Coxeter groups are incoherent. In particular, this holds for Coxeter groups of uniform exponent > 2 with sufficiently many generators.
The class of acylindrically hyperbolic groups, which are groups that admit a certain type of non-elementary action on a hyperbolic space, contains many interesting groups such as non-exceptional mapping class groups and $operatorname{Out}(mathbb F_n)