ﻻ يوجد ملخص باللغة العربية
We construct the Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves. The Hilbert compactification is the GIT quotient of some open part of an appropriate Hilbert scheme of curves in a Grassmannian. It has all the properties asked for by Teixidor.
Let $X$ be a smooth projective curve over the complex numbers. To every representation $rhocolon GL(r)lra GL(V)$ of the complex general linear group on the finite dimensional complex vector space $V$ which satisfies the assumption that there be an in
Let $X$ be a smooth projective curve of genus $g geq 2$ and $M$ be the moduli space of rank 2 stable vector bundles on $X$ whose determinants are isomorphic to a fixed odd degree line bundle $L$. There has been a lot of works studying the moduli and
We show a few basic results about moduli spaces of semistable modules over Lie algebroids. The first result shows that such moduli spaces exist for relative projective morphisms of noetherian schemes, removing some earlier constraints. The second res
We investigate degenerations of syzygy bundles on plane curves over $p$-adic fields. We use Mustafin varieties which are degenerations of projective spaces to find a large family of models of plane curves over the ring of integers such that the speci
We prove an explicit formula for the total Chern character of the Verlinde bundle over the moduli space of pointed stable curves in terms of tautological classes. The Chern characters of the Verlinde bundles define a semisimple CohFT (the ranks, give