ﻻ يوجد ملخص باللغة العربية
We prove an explicit formula for the total Chern character of the Verlinde bundle over the moduli space of pointed stable curves in terms of tautological classes. The Chern characters of the Verlinde bundles define a semisimple CohFT (the ranks, given by the Verlinde formula, determine a semisimple fusion algebra). According to Telemans classification of semisimple CohFTs, there exists an element of Giventals group transforming the fusion algebra into the CohFT. We determine the element using the first Chern class of the Verlinde bundle on the moduli space of nonsingular curves and the projective flatness of the Hitchin connection.
We construct the Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves. The Hilbert compactification is the GIT quotient of some open part of an appropriate Hilbert scheme of curves in a Grassmannian. It has all the properties asked for by Teixidor.
This article accompanies my lecture at the 2015 AMS summer institute in algebraic geometry in Salt Lake City. I survey the recent advances in the study of tautological classes on the moduli spaces of curves. After discussing the Faber-Zagier relation
For $4 mid L$ and $g$ large, we calculate the integral Picard groups of the moduli spaces of curves and principally polarized abelian varieties with level $L$ structures. In particular, we determine the divisibility properties of the standard line b
We compute the homotopy type of the moduli space of flat, unitary connections over aspherical surfaces, after stabilizing with respect to the rank of the underlying bundle. Over the orientable surface M^g, we show that this space has the homotopy typ
The slope of the moduli space of genus g curves is bounded from below by 60/(g+4) via a descendent calculation.