ﻻ يوجد ملخص باللغة العربية
We show a few basic results about moduli spaces of semistable modules over Lie algebroids. The first result shows that such moduli spaces exist for relative projective morphisms of noetherian schemes, removing some earlier constraints. The second result proves general separatedness Langton type theorem for such moduli spaces. More precisely, we prove S-completness of some moduli stacks of semistable modules. In some special cases this result identifies closed points of the moduli space of Gieseker semistable sheaves on a projective scheme and of the Donaldson--Uhlenbeck compactification of the moduli space of slope stable locally free sheaves on a smooth projective surface. The last result generalizes properness of Hitchins morphism and it shows properness of so called Hodge-Hitchin morphism defined in positive characteristic on the moduli space of Gieseker semistable integrable t-connections in terms of the p-curvature morphism. This last result was proven in the curve case by de Cataldo and Zhang using completely different methods.
We study Lie algebroids in positive characteristic and moduli spaces of their modules. In particular, we show a Langtons type theorem for the corresponding moduli spaces. We relate Langtons construction to Simpsons construction of gr-semistable Griff
We study geometric representation theory of Lie algebroids. A new equivalence relation for integrable Lie algebroids is introduced and investigated. It is shown that two equivalent Lie algebroids have equivalent categories of infinitesimal actions of
We generalize the construction of a moduli space of semistable pairs parametrizing isomorphism classes of morphisms from a fixed coherent sheaf to any sheaf with fixed Hilbert polynomial under a notion of stability to the case of projective Deligne-M
We construct the Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves. The Hilbert compactification is the GIT quotient of some open part of an appropriate Hilbert scheme of curves in a Grassmannian. It has all the properties asked for by Teixidor.
In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid o