ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological rigidity of algebraic $P_3$-bundles over curves

67   0   0.0 ( 0 )
 نشر من قبل Alexander Schmitt
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف Alexander Schmitt




اسأل ChatGPT حول البحث

A projective algebraic surface which is homeomorphic to a ruled surface over a curve of genus $gge 1$ is itself a ruled surface over a curve of genus $g$. In this note, we prove the analogous result for projective algebraic manifolds of dimension 4 in case $gge 2$.



قيم البحث

اقرأ أيضاً

If $M$ is a compact 3-manifold whose first betti number is 1, and $N$ is a compact 3-manifold such that $pi_1N$ and $pi_1M$ have the same finite quotients, then $M$ fibres over the circle if and only if $N$ does. We prove that groups of the form $F_2 rtimesmathbb{Z}$ are distinguished from one another by their profinite completions. Thus, regardless of betti number, if $M$ and $N$ are punctured torus bundles over the circle and $M$ is not homeomorphic to $N$, then there is a finite group $G$ such that one of $pi_1M$ and $pi_1N$ maps onto $G$ and the other does not.
126 - Alexander Schmitt 2000
Let $X$ be a smooth projective curve over the complex numbers. To every representation $rhocolon GL(r)lra GL(V)$ of the complex general linear group on the finite dimensional complex vector space $V$ which satisfies the assumption that there be an in teger $alpha$ with $rho(z id_{C^r})=z^alpha id_V$ for all $zinC^*$ we associate the problem of classifying triples $(E,L,phi)$ where $E$ is a vector bundle of rank $r$ on $X$, $L$ is a line bundle on $X$, and $phicolon E_rholra L$ is a non trivial homomorphism. Here, $E_rho$ is the vector bundle of rank $dim V$ associated to $E$ via $rho$. If we take, for example, the standard representation of $GL(r)$ on $C^r$ we have to classify triples $(E,L,phi)$ consisting of $E$ as before and a non-zero homomorphism $phicolon Elra L$ which includes the so-called Bradlow pairs. For the representation of $GL(r)$ on $S^2C^3$ we find the conic bundles of Gomez and Sols. In the present paper, we will formulate a general semistability concept for the above triples which depends on a rational parameter $delta$ and establish the existence of moduli spaces of $delta$-(semi)stable triples of fixed topological type. The notion of semistability mimics the Hilbert-Mumford criterion for $SL(r)$ which is the main reason that such a general approach becomes feasible. In the known examples (the above, Higgs bundles, extension pairs, oriented framed bundles) we show how to recover the usual semistability concept. This process of simplification can also be formalized. Altogether, our results provide a unifying construction for the moduli spaces of most decorated vector bundle problems together with an automatism for finding the right notion of semistability and should therefore be of some interest.
93 - Mao Li , Hao Sun 2021
Let $G$ be a reductive group, and let $X$ be an algebraic curve over an algebraically closed field $k$ with positive characteristic. We prove a version of nonabelian Hodge correspondence for $G$-local systems over $X$ and $G$-Higgs bundles over the F robenius twist $X$ with first order poles. To obtain a general statement of the correspondence, we introduce the language of parahoric group schemes to establish the correspondence.
In this paper, we adapt the differential signature construction to the equivalence problem for complex plane algebraic curves under the actions of the projective group and its subgroups. Given an action of a group $G$, a signature map assigns to a pl ane algebraic curve another plane algebraic curve (a signature curve) in such a way that two generic curves have the same signatures if and only if they are $G$-equivalent. We prove that for any $G$-action, there exists a pair of rational differential invariants, called classifying invariants, that can be used to construct signatures. We derive a formula for the degree of a signature curve in terms of the degree of the original curve, the size of its symmetry group and some quantities depending on a choice of classifying invariants. For the full projective group, as well as for its affine, special affine and special Euclidean subgroups, we give explicit sets of rational classifying invariants and derive a formula for the degree of the signature curve of a generic curve as a quadratic function of the degree of the original curve. We show that this generic degree is the sharp upper bound.
Let $S$ be a Riemann surface obtained by deleting a finite number of points, called cusps, from a compact Riemann surface. Let $rho: pi_1(S)to Sl(n, mathbb{C})$ be a semisimple linear representation of $pi_1(S)$ which is unipotent near the cusps. We investigate various cohomologies associated to $rho$ of $bar S$ with degenerating coefficients $L_{rho}$ (considered as a local system -- a flat vector bundle, a Higgs bundle, or a $mathcal{D}$-module, depending on the context): the v{C}ech cohomology of $j_*L_{rho}$, the $L^2$-cohomology, the $L^2$-Dolbeault cohomology, and the $L^2$-Higgs cohomology, and the relationships between them. This paper is meant to be a part of the general program of studying cohomologies with degenerating coefficients on quasiprojective varieties and their Kahlerian generalizations. The general aim here is not restricted to the case of curves nor to the one of representations that are unipotent near the divisor. The purpose of this note therefore is to illuminate at this particular case where many of the (analytic and geometric) difficulties of the general case are not present what differences will appear when we consider unipotent harmonic bundles instead of Variations of Hodge Structures where the results are known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا