ترغب بنشر مسار تعليمي؟ اضغط هنا

Profinite rigidity and surface bundles over the circle

290   0   0.0 ( 0 )
 نشر من قبل Henry Wilton
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

If $M$ is a compact 3-manifold whose first betti number is 1, and $N$ is a compact 3-manifold such that $pi_1N$ and $pi_1M$ have the same finite quotients, then $M$ fibres over the circle if and only if $N$ does. We prove that groups of the form $F_2rtimesmathbb{Z}$ are distinguished from one another by their profinite completions. Thus, regardless of betti number, if $M$ and $N$ are punctured torus bundles over the circle and $M$ is not homeomorphic to $N$, then there is a finite group $G$ such that one of $pi_1M$ and $pi_1N$ maps onto $G$ and the other does not.



قيم البحث

اقرأ أيضاً

258 - Henry Wilton 2020
Surface groups are determined among limit groups by their profinite completions. As a corollary, the set of surface words in a free group is closed in the profinite topology.
66 - Alexander Schmitt 2002
A projective algebraic surface which is homeomorphic to a ruled surface over a curve of genus $gge 1$ is itself a ruled surface over a curve of genus $g$. In this note, we prove the analogous result for projective algebraic manifolds of dimension 4 in case $gge 2$.
172 - Paul W.Y. Lee 2017
In this paper, we prove that principal circle bundles over the complex projective space equipped with the standard Sasakian structures are volume rigid among all $K$-contact manifolds satisfying positivity conditions of tensors involing the Tanaka-Webster curvature.
The profinite completion of the fundamental group of a closed, orientable $3$-manifold determines the Kneser--Milnor decomposition. If $M$ is irreducible, then the profinite completion determines the Jaco--Shalen--Johannson decomposition of $M$.
In this note, we announce the first results on quasi-isometric rigidity of non-nilpotent polycyclic groups. In particular, we prove that any group quasi-isometric to the three dimenionsional solvable Lie group Sol is virtually a lattice in Sol. We pr ove analogous results for groups quasi-isometric to $R ltimes R^n$ where the semidirect product is defined by a diagonalizable matrix of determinant one with no eigenvalues on the unit circle. Our approach to these problems is to first classify all self quasi-isometries of the solvable Lie group. Our classification of self quasi-isometries for $R ltimes R^n$ proves a conjecture made by Farb and Mosher in [FM4]. Our techniques for studying quasi-isometries extend to some other classes of groups and spaces. In particular, we characterize groups quasi-isometric to any lamplighter group, answering a question of de la Harpe [dlH]. Also, we prove that certain Diestel-Leader graphs are not quasi-isometric to any finitely generated group, verifying a conjecture of Diestel and Leader from [DL] and answering a question of Woess from [SW],[Wo1]. We also prove that certain non-unimodular, non-hyperbolic solvable Lie groups are not quasi-isometric to finitely generated groups. The results in this paper are contributions to Gromovs program for classifying finitely generated groups up to quasi-isometry [Gr2]. We introduce a new technique for studying quasi-isometries, which we refer to as coarse differentiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا