ﻻ يوجد ملخص باللغة العربية
In this paper, we adapt the differential signature construction to the equivalence problem for complex plane algebraic curves under the actions of the projective group and its subgroups. Given an action of a group $G$, a signature map assigns to a plane algebraic curve another plane algebraic curve (a signature curve) in such a way that two generic curves have the same signatures if and only if they are $G$-equivalent. We prove that for any $G$-action, there exists a pair of rational differential invariants, called classifying invariants, that can be used to construct signatures. We derive a formula for the degree of a signature curve in terms of the degree of the original curve, the size of its symmetry group and some quantities depending on a choice of classifying invariants. For the full projective group, as well as for its affine, special affine and special Euclidean subgroups, we give explicit sets of rational classifying invariants and derive a formula for the degree of the signature curve of a generic curve as a quadratic function of the degree of the original curve. We show that this generic degree is the sharp upper bound.
A family of algebraic curves covering a projective variety $X$ is called a web of curves on $X$ if it has only finitely many members through a general point of $X$. A web of curves on $X$ induces a web-structure, in the sense of local differential ge
We explain that in the study of the asymptotic expansion at the origin of a period integral like $gamma$z $omega$/df or of a hermitian period like f =s $rho$.$omega$/df $land$ $omega$ /df the computation of the Bernstein polynomial of the fresco (fil
In this paper, we study unirational differential curves and the corresponding differential rational parametrizations. We first investigate basic properties of proper differential rational parametrizations for unirational differential curves. Then we
We report on the problem of the existence of complex and real algebraic curves in the plane with prescribed singularities up to analytic and topological equivalence. The question is whether, for a given positive integer $d$ and a finite number of giv
A projective algebraic surface which is homeomorphic to a ruled surface over a curve of genus $gge 1$ is itself a ruled surface over a curve of genus $g$. In this note, we prove the analogous result for projective algebraic manifolds of dimension 4 in case $gge 2$.