The revised version has two additional references and a shorter proof of Proposition 5.7. This version also makes numerous small changes and has an appendix containing a proof of the degree formula for a parametrized surface.
We show that the Waring rank of the $3 times 3$ determinant, previously known to be between $14$ and $18$, is at least $15$. We use syzygies of the apolar ideal, which have not been used in this way before. Additionally, we show that the cactus rank of the $3 times 3$ permanent is at least $14$.
Let U be a basepoint free four-dimensional subpace of the space of sections of bidegree (a,b) on X = P^1 x P^1, with a and b at least 2. The sections corresponding to U determine a regular map from X to P^3. We show that there can be at most one line
ar syzygy on the associated bigraded ideal I_U in the bigraded ring k[s,t;u,v]. Existence of a linear syzygy, coupled with the assumption that U is basepoint free, implies the existence of an additional special pair of minimal first syzygies. Using results of Botbol, we show that these three syzygies are sufficient to determine the implicit equation of the image of X in P^3; we also show that the singular locus must contain a line.
We show that vanishing of asymptotic p-th syzygies implies p-very ampleness for line bundles on arbitrary projective schemes. For smooth surfaces we prove that the converse holds when p is small, by studying the Bridgeland-King-Reid-Haiman correspond
ence for tautological bundles on the Hilbert scheme of points. This extends previous results of Ein-Lazarsfeld, Ein-Lazarsfeld-Yang and gives a partial answer to some of their questions. As an application of our results, we show how to use syzygies to bound the irrationality of a variety.
We construct minimal cellular resolutions of squarefree monomial ideals arising from hyperplane arrangements, matroids and oriented matroids. These are Stanley-Reisner ideals of complexes of independent sets, and of triangulations of Lawrence matroid
polytopes. Our resolution provides a cellular realization of Stanleys formula for their Betti numbers. For unimodular matroids our resolutions are related to hyperplane arrangements on tori, and we recover the resolutions constructed by Bayer, Popescu and Sturmfels. We resolve the combinatorial problems posed in their paper by computing Mobius invariants of graphic and cographic arrangements in terms of Hermite polynomials.
In this paper we discuss the relationship between the moving planes of a rational parametric surface and the singular points on it. Firstly, the intersection multiplicity of several planar curves is introduced. Then we derive an equivalent definition
for the order of a singular point on a rational parametric surface. Based on the new definition of singularity orders, we derive the relationship between the moving planes of a rational surface and the order of singular points. Especially, the relationship between the $mu$-basis and the order of a singular point is also discussed.