ﻻ يوجد ملخص باللغة العربية
We show that vanishing of asymptotic p-th syzygies implies p-very ampleness for line bundles on arbitrary projective schemes. For smooth surfaces we prove that the converse holds when p is small, by studying the Bridgeland-King-Reid-Haiman correspondence for tautological bundles on the Hilbert scheme of points. This extends previous results of Ein-Lazarsfeld, Ein-Lazarsfeld-Yang and gives a partial answer to some of their questions. As an application of our results, we show how to use syzygies to bound the irrationality of a variety.
We introduce and study higher order Jacobian ideals, higher order and mixed Hessians, higher order polar maps, and higher order Milnor algebras associated to a reduced projective hypersurface. We relate these higher order objects to some standard gra
The revised version has two additional references and a shorter proof of Proposition 5.7. This version also makes numerous small changes and has an appendix containing a proof of the degree formula for a parametrized surface.
We show that the Waring rank of the $3 times 3$ determinant, previously known to be between $14$ and $18$, is at least $15$. We use syzygies of the apolar ideal, which have not been used in this way before. Additionally, we show that the cactus rank of the $3 times 3$ permanent is at least $14$.
Let U be a basepoint free four-dimensional subpace of the space of sections of bidegree (a,b) on X = P^1 x P^1, with a and b at least 2. The sections corresponding to U determine a regular map from X to P^3. We show that there can be at most one line
We construct minimal cellular resolutions of squarefree monomial ideals arising from hyperplane arrangements, matroids and oriented matroids. These are Stanley-Reisner ideals of complexes of independent sets, and of triangulations of Lawrence matroid