ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor product surfaces and linear syzygies

224   0   0.0 ( 0 )
 نشر من قبل Henry K. Schenck
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let U be a basepoint free four-dimensional subpace of the space of sections of bidegree (a,b) on X = P^1 x P^1, with a and b at least 2. The sections corresponding to U determine a regular map from X to P^3. We show that there can be at most one linear syzygy on the associated bigraded ideal I_U in the bigraded ring k[s,t;u,v]. Existence of a linear syzygy, coupled with the assumption that U is basepoint free, implies the existence of an additional special pair of minimal first syzygies. Using results of Botbol, we show that these three syzygies are sufficient to determine the implicit equation of the image of X in P^3; we also show that the singular locus must contain a line.



قيم البحث

اقرأ أيضاً

64 - David A. Cox 2000
The revised version has two additional references and a shorter proof of Proposition 5.7. This version also makes numerous small changes and has an appendix containing a proof of the degree formula for a parametrized surface.
62 - Daniele Agostini 2017
We show that vanishing of asymptotic p-th syzygies implies p-very ampleness for line bundles on arbitrary projective schemes. For smooth surfaces we prove that the converse holds when p is small, by studying the Bridgeland-King-Reid-Haiman correspond ence for tautological bundles on the Hilbert scheme of points. This extends previous results of Ein-Lazarsfeld, Ein-Lazarsfeld-Yang and gives a partial answer to some of their questions. As an application of our results, we show how to use syzygies to bound the irrationality of a variety.
We construct minimal cellular resolutions of squarefree monomial ideals arising from hyperplane arrangements, matroids and oriented matroids. These are Stanley-Reisner ideals of complexes of independent sets, and of triangulations of Lawrence matroid polytopes. Our resolution provides a cellular realization of Stanleys formula for their Betti numbers. For unimodular matroids our resolutions are related to hyperplane arrangements on tori, and we recover the resolutions constructed by Bayer, Popescu and Sturmfels. We resolve the combinatorial problems posed in their paper by computing Mobius invariants of graphic and cographic arrangements in terms of Hermite polynomials.
In this paper we discuss the relationship between the moving planes of a rational parametric surface and the singular points on it. Firstly, the intersection multiplicity of several planar curves is introduced. Then we derive an equivalent definition for the order of a singular point on a rational parametric surface. Based on the new definition of singularity orders, we derive the relationship between the moving planes of a rational surface and the order of singular points. Especially, the relationship between the $mu$-basis and the order of a singular point is also discussed.
We show that for every positive integer R there exist monomial ideals generated in degree two, with linear syzygies, and regularity of the quotient equal to R. Such examples can not be found among Gorenstein ideals since the regularity of their quoti ents is at most four. We also show that for most monomial ideals generated in degree two and with linear syzygies the regularity grows at most doubly logarithmically in the number of variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا