ترغب بنشر مسار تعليمي؟ اضغط هنا

Adsorbed self-avoiding walks subject to a force

121   0   0.0 ( 0 )
 نشر من قبل Esaias J Janse van Rensburg
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force. In this paper the force is applied normal to the surface at the last vertex of the walk. We prove that the appropriate limiting free energy exists where there is an applied force and a surface potential term, and prove that this free energy is convex in appropriate variables. We then derive an expression for the limiting free energy in terms of the free energy without a force and the free energy with no surface interaction. Finally we show that there is a phase boundary between the adsorbed phase and the desorbed phase in the presence of a force, prove some qualitative properties of this boundary and derive bounds on the location of the boundary.



قيم البحث

اقرأ أيضاً

We consider self-avoiding walks terminally attached to a surface at which they can adsorb. A force is applied, normal to the surface, to desorb the walk and we investigate how the behaviour depends on the vertex of the walk at which the force is appl ied. We use rigorous arguments to map out some features of the phase diagram, including bounds on the locations of some phase boundaries, and we use Monte Carlo methods to make quantitative predictions about the locations of these boundaries and the nature of the various phase transitions.
61 - Adam Gamsa , John Cardy 2006
The O(n) spin model in two dimensions may equivalently be formulated as a loop model, and then mapped to a height model which is conjectured to flow under the renormalization group to a conformal field theory (CFT). At the critical point, the order n terms in the partition function and correlation functions describe single self-avoiding loops. We investigate the ensemble of these self-avoiding loops using twist operators, which count loops which wind non-trivially around them with a factor -1. These turn out to have level two null states and hence their correlators satisfy a set of partial differential equations. We show that partly-connected parts of the four point function count the expected number of loops which separate one pair of points from the other pair, and find an explicit expression for this. We argue that the differential equation satisfied by these expectation values should have an interpretation in terms of a stochastic(Schramm)-Loewner evolution (SLE_kappa) process with kappa=6. The two point function in a simply connected domain satisfies a closely related set of equations. We solve these and hence calculate the expected number of single loops which separate both points from the boundary.
This is the second of two papers on the end-to-end distance of a weakly self-repelling walk on a four dimensional hierarchical lattice. It completes the proof that the expected value grows as a constant times sqrt{T} log^{1/8}T (1+O((log log T)/log T )), which is the same law as has been conjectured for self-avoiding walks on the simple cubic lattice Z^4. - Apart from completing the program in the first paper, the main result is that the Greens function is almost equal to the Greens function for the Markov process with no self-repulsion, but at a different value of the killing rate beta which can be accurately calculated when the interaction is small. Furthermore, the Greens function is analytic in beta in a sector in the complex plane with opening angle greater than pi.
We study the connective constants of weighted self-avoiding walks (SAWs) on infinite graphs and groups. The main focus is upon weighted SAWs on finitely generated, virtually indicable groups. Such groups possess so-called height functions, and this p ermits the study of SAWs with the special property of being bridges. The group structure is relevant in the interaction between the height function and the weight function. The main difficulties arise when the support of the weight function is unbounded, since the corresponding graph is no longer locally finite. There are two principal results, of which the first is a condition under which the weighted connective constant and the weighted bridge constant are equal. When the weight function has unbounded support, we work with a generalized notion of the length of a walk, which is subject to a certain condition. In the second main result, the above equality is used to prove a continuity theorem for connective constants on the space of weight functions endowed with a suitable distance function.
We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at $(L, L)$, and are entirely contained in the square $[0, L] times [0, L]$ on the square lattice ${mathbb Z}^2$. The number of distinct walks is known to grow as $lambda^{L^2+o(L^2)}$. We estimate $lambda = 1.744550 pm 0.000005$ as well as obtaining strict upper and lower bounds, $1.628 < lambda < 1.782.$ We give exact results for the number of SAW of length $2L + 2K$ for $K = 0, 1, 2$ and asymptotic results for $K = o(L^{1/3})$. We also consider the model in which a weight or {em fugacity} $x$ is associated with each step of the walk. This gives rise to a canonical model of a phase transition. For $x < 1/mu$ the average length of a SAW grows as $L$, while for $x > 1/mu$ it grows as $L^2$. Here $mu$ is the growth constant of unconstrained SAW in ${mathbb Z}^2$. For $x = 1/mu$ we provide numerical evidence, but no proof, that the average walk length grows as $L^{4/3}$. We also consider Hamiltonian walks under the same restriction. They are known to grow as $tau^{L^2+o(L^2)}$ on the same $L times L$ lattice. We give precise estimates for $tau$ as well as upper and lower bounds, and prove that $tau < lambda.$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا