ﻻ يوجد ملخص باللغة العربية
We study singularity formation in spherically symmetric solutions of the charge-one and charge-two sector of the (2+1)-dimensional S^2 sigma-model and the (4+1)-dimensional Yang-Mills model, near the adiabatic limit. These equations are non-integrable, and so studies are performed numerically on rotationally symmetric solutions using an iterative finite differencing scheme that is numerically stable. We evaluate the accuracy of predictions made with the geodesic approximation. We find that the geodesic approximation is extremely accurate for the charge-two sigma-model and the Yang-Mills model, both of which exhibit fast blowup. The charge-one sigma-model exhibits slow blowup. There the geodesic approximation must be modified by applying an infrared cutoff that depends on initial conditions.
We continue the study of fuzzy geometries inside Connes spectral formalism and their relation to multimatrix models. In this companion paper to [arXiv:2007:10914, Ann. Henri Poincare, 2021] we propose a gauge theory setting based on noncommutative ge
In this paper we recover the non-perturbative partition function of 2D~Yang-Mills theory from the perturbative path integral. To achieve this goal, we study the perturbative path integral quantization for 2D~Yang-Mills theory on surfaces with boundar
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass
We give rigorous proofs for the existence of infinitely many (non-BPS) bound states for two linear operators associated with the Yang-Mills-Higgs equations at vanishing Higgs self-coupling and for gauge group SU(2): the operator obtained by linearisi
A globalized version of a trace formula for the Poisson Sigma Model on the disk is presented by using its formal global picture in the setting of the Batalin-Vilkovisky formalism. This global construction includes the concept of zero modes. Moreover,