ﻻ يوجد ملخص باللغة العربية
In this paper we recover the non-perturbative partition function of 2D~Yang-Mills theory from the perturbative path integral. To achieve this goal, we study the perturbative path integral quantization for 2D~Yang-Mills theory on surfaces with boundaries and corners in the Batalin-Vilkovisky formalism (or, more precisely, in its adaptation to the setting with boundaries, compatible with gluing and cutting -- the BV-BFV formalism). We prove that cutting a surface (e.g. a closed one) into simple enough pieces -- building blocks -- and choosing a convenient gauge-fixing on the pieces, and assembling back the partition function on the surface, one recovers the known non-perturbative answers for 2D~Yang-Mills theory.
Lecture notes for the course Batalin-Vilkovisky formalism and applications in topological quantum field theory given at the University of Notre Dame in the Fall 2016 for a mathematical audience. In these lectures we give a slow introduction to the pe
We study an equivariant extension of the Batalin-Vilkovisky formalism for quantizing gauge theories. Namely, we introduce a general framework to encompass failures of the quantum master equation, and we apply it to the natural equivariant extension o
We prove the Makeenko-Migdal equation for two-dimensional Euclidean Yang-Mills theory on an arbitrary compact surface, possibly with boundary. In particular, we show that two of the proofs given by the first, third, and fourth authors for the plane c
We give a conceptual formulation of Kontsevichs `dual construction producing graph cohomology classes from a differential graded Frobenius algebra with an odd scalar product. Our construction -- whilst equivalent to the original one -- is combinatori
Kontsevichs formality theorem states that the differential graded Lie algebra of multidifferential operators on a manifold M is L-infinity-quasi-isomorphic to its cohomology. The construction of the L-infinity map is given in terms of integrals of di