ﻻ يوجد ملخص باللغة العربية
A globalized version of a trace formula for the Poisson Sigma Model on the disk is presented by using its formal global picture in the setting of the Batalin-Vilkovisky formalism. This global construction includes the concept of zero modes. Moreover, for the symplectic case of the Poisson Sigma Model with cotangent target, the globalized trace reduces to a symplectic construction which was presented by Grady, Li and Li for 1-dimensional Chern-Simons theory (topological quantum mechanics). In addition, the connection between this formula and the Nest-Tsygan theorem and the Tamarkin-Tsygan theorem is explained.
We construct a formal global quantization of the Poisson Sigma Model in the BV-BFV formalism using the perturbative quantization of AKSZ theories on manifolds with boundary and analyze the properties of the boundary BFV operator. Moreover, we conside
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass
Using methods of formal geometry, the Poisson sigma model on a closed surface is studied in perturbation theory. The effective action, as a function on vacua, is shown to have no quantum corrections if the surface is a torus or if the Poisson structu
We evaluate the path integral of the Poisson sigma model on sphere and study the correlators of quantum observables. We argue that for the path integral to be well-defined the corresponding Poisson structure should be unimodular. The construction o
We discuss the A-model as a gauge fixing of the Poisson Sigma Model with target a symplectic structure. We complete the discussion in [arXiv:0706.3164], where a gauge fixing defined by a compatible complex structure was introduced, by showing how to