The evolution of the distribution-theoretic methods in perturbative quantum field theory is reviewed starting from Bogolyubovs pioneering 1952 work with emphasis on the theory and calculations of perturbation theory integrals.
The problem of causality is analyzed in the context of Local Quantum Field Theory. Contrary to recent claims, it is shown that apparent noncausal behaviour is due to a lack of the notion of sharp localizability for a relativistic quantum system. (Replaced corrupted file)
We discuss some basic aspects of quantum fields on star graphs, focusing on boundary conditions, symmetries and scale invariance in particular. We investigate the four-fermion bulk interaction in detail. Using bosonization and vertex operators, we so
lve the model exactly for scale invariant boundary conditions, formulated in terms of the fermion current and without dissipation. The critical points are classified and determined explicitly. These results are applied for deriving the charge and spin transport, which have interesting physical features.
We derive general covariant coupled equations of QCD describing the tetraquark in terms of a mix of four-quark states $2q2bar q$, and two-quark states $qbar q$. The coupling of $2q2bar q$ to $qbar q$ states is achieved by a simple contraction of a fo
ur-quark $qbar q$-irreducible Green function down to a two-quark $qbar q$ Bethe-Salpeter kernel. The resulting tetraquark equations are expressed in an exact field theoretic form, and are in agreement with those obtained previously by consideration of disconnected interactions; however, despite being more general, they have been derived here in a much simpler and more transparent way.
Perturbative quantum field theory usually uses second quantisation and Feynman diagrams. The worldline formalism provides an alternative approach based on first quantised particle path integrals, similar in spirit to string perturbation theory. Here
we review the history, main features and present applications of the formalism. Our emphasis is on recent developments such as the path integral representation of open fermion lines, the description of colour using auxiliary worldline fields, incorporation of higher spin, and extension of the formalism to non-commutative space.
Tunneling in quantum field theory is worth understanding properly, not least because it controls the long term fate of our universe. There are however, a number of features of tunneling rate calculations which lack a desirable transparency, such as t
he necessity of analytic continuation, the appropriateness of using an effective instead of classical potential, and the sensitivity to short-distance physics. This paper attempts to review in pedagogical detail the physical origin of tunneling and its connection to the path integral. Both the traditional potential-deformation method and a recent more direct propagator-based method are discussed. Some new insights from using approximate semi-classical solutions are presented. In addition, we explore the sensitivity of the lifetime of our universe to short distance physics, such as quantum gravity, emphasizing a number of important subtleties.