ﻻ يوجد ملخص باللغة العربية
We discuss some basic aspects of quantum fields on star graphs, focusing on boundary conditions, symmetries and scale invariance in particular. We investigate the four-fermion bulk interaction in detail. Using bosonization and vertex operators, we solve the model exactly for scale invariant boundary conditions, formulated in terms of the fermion current and without dissipation. The critical points are classified and determined explicitly. These results are applied for deriving the charge and spin transport, which have interesting physical features.
We investigate the propagation of a massless scalar field on a star graph, modeling the junction of $n$ quantum wires. The vertex of the graph is represented by a point-like impurity (defect), characterized by a one-body scattering matrix. The genera
We consider the Dirac equation on periodic networks (quantum graphs). The self-adjoint quasi periodic boundary conditions are derived. The secular equation allowing us to find the energy spectrum of the Dirac particles on periodic quantum graphs is o
The evolution of the distribution-theoretic methods in perturbative quantum field theory is reviewed starting from Bogolyubovs pioneering 1952 work with emphasis on the theory and calculations of perturbation theory integrals.
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide.
We propose a general formulation of perturbative quantum field theory on (finitely generated) projective modules over noncommutative algebras. This is the analogue of scalar field theories with non-trivial topology in the noncommutative realm. We tre