ﻻ يوجد ملخص باللغة العربية
We describe an extension of the nonlinear integral equation (NLIE) method to Virasoro minimal models perturbed by the relevant operator $Phi_{(1,3)$. Along the way, we also complete our previous studies of the finite volume spectrum of sine-Gordon theory by considering the attractive regime and more specifically, breather states. For the minimal models, we examine the states with zero topological charge in detail, and give numerical comparison to TBA and TCS results. We think that the evidence presented strongly supports the validity of the NLIE description of perturbed minimal models.
We examine the connection between the nonlinear integral equation (NLIE) derived from light-cone lattice and sine-Gordon quantum field theory, considered as a perturbed c=1 conformal field theory. After clarifying some delicate points of the NLIE ded
We consider the tricritical Ising model on a strip or cylinder under the integrable perturbation by the thermal $phi_{1,3}$ boundary field. This perturbation induces five distinct renormalization group (RG) flows between Cardy type boundary condition
We derive the fermionic polynomial generalizations of the characters of the integrable perturbations $phi_{2,1}$ and $phi_{1,5}$ of the general minimal $M(p,p)$ conformal field theory by use of the recently discovered trinomial analogue of Baileys le
In this thesis, we review recent progresses on Nonlinear Integral Equation approach to finite size effects in two dimensional integrable quantum field theories, with emphasis to Sine-Gordon/Massive Thirring model and restrictions to minimal models pe
The filtration of the Virasoro minimal series representations M^{(p,p)}_{r,s} induced by the (1,3)-primary field $phi_{1,3}(z)$ is studied. For 1< p/p< 2, a conjectural basis of M^{(p,p)}_{r,s} compatible with the filtration is given by using monomia