ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Integral Equation and Finite Volume Spectrum of Sine-Gordon Theory

391   0   0.0 ( 0 )
 نشر من قبل Gabor Takacs
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the connection between the nonlinear integral equation (NLIE) derived from light-cone lattice and sine-Gordon quantum field theory, considered as a perturbed c=1 conformal field theory. After clarifying some delicate points of the NLIE deduction from the lattice, we compare both analytic and numerical predictions of the NLIE to previously known results in sine-Gordon theory. To provide the basis for the numerical comparison we use data from Truncated Conformal Space method. Together with results from analysis of infrared and ultraviolet asymptotics, we find evidence that it is necessary to change the rule of quantization proposed by Destri and de Vega to a new one which includes as a special case that of Fioravanti et al. This way we find strong evidence for the validity of the NLIE as a description of the finite size effects of sine-Gordon theory.



قيم البحث

اقرأ أيضاً

123 - G. Feverati 2000
In this thesis, we review recent progresses on Nonlinear Integral Equation approach to finite size effects in two dimensional integrable quantum field theories, with emphasis to Sine-Gordon/Massive Thirring model and restrictions to minimal models pe rturbed by $Phi_{1,3}$. Exact calculations of the dependence of energy levels on the size are presented for vacuum and many excited states.
We describe an extension of the nonlinear integral equation (NLIE) method to Virasoro minimal models perturbed by the relevant operator $Phi_{(1,3)$. Along the way, we also complete our previous studies of the finite volume spectrum of sine-Gordon th eory by considering the attractive regime and more specifically, breather states. For the minimal models, we examine the states with zero topological charge in detail, and give numerical comparison to TBA and TCS results. We think that the evidence presented strongly supports the validity of the NLIE description of perturbed minimal models.
506 - Francesco Buccheri 2012
We present an expression for the generating function of correlation functions of the sine-Gordon integrable field theory on a cylinder, with compact space. This is derived from the Destri-De Vega integrable lattice regularization of the theory, formu lated as an inhomogeneous Heisenberg XXZ spin chain, and from more recent advances in the computations of spin form factors in the thermodynamic limit.
The semi-classical spectrum of the Homogeneous sine-Gordon theories associated with an arbitrary compact simple Lie group G is obtained and shown to be entirely given by solitons. These theories describe quantum integrable massive perturbations of Ge pners G-parafermions whose classical equations-of-motion are non-abelian affine Toda equations. One-soliton solutions are constructed by embeddings of the SU(2) complex sine-Gordon soliton in the regular SU(2) subgroups of G. The resulting spectrum exhibits both stable and unstable particles, which is a peculiar feature shared with the spectrum of monopoles and dyons in N=2 and N=4 supersymmetric gauge theories.
The perturbed conformal field theories corresponding to the massive Symmetric Space sine-Gordon soliton theories are identified by calculating the central charge of the unperturbed conformal field theory and the conformal dimension of the perturbatio n. They are described by an action with a positive-definite kinetic term and a real potential term bounded from below, their equations of motion are non-abelian affine Toda equations and, moreover, they exhibit a mass gap. The unperturbed CFT corresponding to the compact symmetric space G/G_0 is either the WZNW action for G_0 or the gauged WZNW action for a coset of the form G_0/U(1)^p. The quantum integrability of the theories that describe perturbations of a WZNW action, named Split models, is established by showing that they have quantum conserved quantities of spin +3 and -3. Together with the already known results for the other massive theories associated with the non-abelian affine Toda equations, the Homogeneous sine-Gordon theories, this supports the conjecture that all the massive Symmetric Space sine-Gordon theories will be quantum integrable and, hence, will admit a factorizable S-matrix. The general features of the soliton spectrum are discussed, and some explicit soliton solutions for the Split models are constructed. In general, the solitons will carry both topological charges and abelian Noether charges. Moreover, the spectrum is expected to include stable and unstable particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا