ﻻ يوجد ملخص باللغة العربية
We derive the fermionic polynomial generalizations of the characters of the integrable perturbations $phi_{2,1}$ and $phi_{1,5}$ of the general minimal $M(p,p)$ conformal field theory by use of the recently discovered trinomial analogue of Baileys lemma. For $phi_{2,1}$ perturbations results are given for all models with $2p>p$ and for $phi_{1,5}$ perturbations results for all models with ${pover 3}<p< {pover 2}$ are obtained. For the $phi_{2,1}$ perturbation of the unitary case $M(p,p+1)$ we use the incidence matrix obtained from these character polynomials to conjecture a set of TBA equations. We also find that for $phi_{1,5}$ with $2<p/p < 5/2$ and for $phi_{2,1}$ satisfying $3p<2p$ there are usually several different fermionic polynomials which lead to the identical bosonic polynomial. We interpret this to mean that in these cases the specification of the perturbing field is not sufficient to define the theory and that an independent statement of the choice of the proper vacuum must be made.
The filtration of the Virasoro minimal series representations M^{(p,p)}_{r,s} induced by the (1,3)-primary field $phi_{1,3}(z)$ is studied. For 1< p/p< 2, a conjectural basis of M^{(p,p)}_{r,s} compatible with the filtration is given by using monomia
We describe an extension of the nonlinear integral equation (NLIE) method to Virasoro minimal models perturbed by the relevant operator $Phi_{(1,3)$. Along the way, we also complete our previous studies of the finite volume spectrum of sine-Gordon th
The scaled inverse of a nonzero element $a(x)in mathbb{Z}[x]/f(x)$, where $f(x)$ is an irreducible polynomial over $mathbb{Z}$, is the element $b(x)in mathbb{Z}[x]/f(x)$ such that $a(x)b(x)=c pmod{f(x)}$ for the smallest possible positive integer sca
We consider the tricritical Ising model on a strip or cylinder under the integrable perturbation by the thermal $phi_{1,3}$ boundary field. This perturbation induces five distinct renormalization group (RG) flows between Cardy type boundary condition
We consider black $p$-brane solutions of the low energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that te