ترغب بنشر مسار تعليمي؟ اضغط هنا

World-Sheet Defects, Strings, and Quark Confinement

188   0   0.0 ( 0 )
 نشر من قبل Dr N. Mavromatos
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English
 تأليف N.E. Mavromatos




اسأل ChatGPT حول البحث

In this talk I give a preliminary account of original results, obtained in collaboration with John Ellis. Details and further elaboration will be presented in a forthcoming publication. We present a proposal for a non-critical (Liouville) string approach to confinement of four-dimensional (non-abelian) gauge theories, based on recent developments on the subject by Witten and Maldacena. We discuss the effects of vortices and monopoles on the open world-sheets whose boundaries are Wilson loops of the target-space (non Abelian) Gauge theory. By appropriately employing `D-particles, associated with the target-space embedding of such defects, we argue that the apprearance of five-dimensional Anti-De-Sitter (AdS) space times is quite natural, as a result of Liouville dressing.We isolate the world-sheet defect contributions to the Wilson loop by constructing an appropriate observable, which is the same as the second observable in the supersymmetric U(1) theory of Awada and Mansouri, but in our approach supersymmetry is not necessary.When vortex condensation occurs, we argue in favour of a (low-temperature) confining phase, in the sense of an area law, for a large-$N_c$ (conformal) gauge theory at finite temperatures. A connection of the Berezinski-Kosterlitz-Thouless (BKT) transitions on the world-sheet with the critical temperatures in the thermodynamics of Black Holes in the five-dimensional AdS space is made.



قيم البحث

اقرأ أيضاً

54 - C. Schweigert , J. Fuchs 2001
We investigate the mathematical structure of the world sheet in two-dimensional conformal field theories.
We relate quark confinement, as measured by the Polyakov-loop order parameter, to color confinement, as described by the Kugo-Ojima/Gribov-Zwanziger scenario. We identify a simple criterion for quark confinement based on the IR behaviour of ghost and gluon propagators, and compute the order-parameter potential from the knowledge of Landau-gauge correlation functions with the aid of the functional RG. Our approach predicts the deconfinement transition in quenched QCD to be of first order for SU(3) and second order for SU(2) -- in agreement with general expectations. As an estimate for the critical temperature, we obtain T_c=284MeV for SU(3).
The color-flavor locking phenomenon in the magnetic picture can be the microscopic description of the quark confinement in QCD. We demonstrate it in an N=2 supersymmetric SU(Nc)xSU(Nc) quiver gauge theory coupled to Nf flavors of quarks (Nf<Nc). This model reduces to SU(Nc) gauge theory with Nf flavors when the vacuum expectations value of the link field is much larger than the dynamical scales, and thus provides a continuous deformation of the N=2 supersymmetric QCD. We study a vacuum which survives upon adding a superpotential term to reduce to N=1 while preserving the vectorial SU(Nf) flavor symmetry. We find a region of the parameter space where the confinement is described by the Higgsing of a weakly coupled magnetic SU(Nf)xU(1) gauge theory. The Higgsing locks the quantum numbers of SU(Nf) magnetic color to those of SU(Nf) flavor symmetry, and thus the massive magnetic gauge bosons become the singlet and adjoint representations of the flavor group, i.e, the vector mesons. If the qualitative picture remains valid in non-supersymmetric QCD, one can understand the Hidden Local Symmetry as the magnetic dual description of QCD, and the confining string is identified as the vortex of vector meson fields.
294 - F.Fucito , M.Martellini , M.Zeni 1996
Using the BF version of pure Yang-Mills, it is possible to find a covariant representation of the t Hooft magnetic flux operator. In this framework, t Hoofts pioneering work on confinement finds an explicit realization in the continuum. Employing the Abelian projection gauge we compute the expectation value of the magnetic variable and find the expected perimeter law. We also check the area law behaviour for the Wilson loop average and compute the string tension which turns out to be of the right order of magnitude.
The quantum theory of a massless spin two particle is strongly constrained by diffeomorphism invariance, which is in turn implied by unitarity. We explicitly exhibit the space-time diffeomorphism algebra of string theory, realizing it in terms of wor ld sheet vertex operators. Viewing diffeomorphisms as field redefinitions in the two-dimensional conformal field theory renders the calculation of their algebra straightforward. Next, we generalize the analysis to combinations of space-time anti-symmetric tensor gauge transformations and diffeomorphisms. We also point out a left-right split of the algebra combined with a twist that reproduces the C-bracket of double field theory. We further compare our derivation to an analysis in terms of marginal deformations as well as vertex operator algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا