ﻻ يوجد ملخص باللغة العربية
The quantum theory of a massless spin two particle is strongly constrained by diffeomorphism invariance, which is in turn implied by unitarity. We explicitly exhibit the space-time diffeomorphism algebra of string theory, realizing it in terms of world sheet vertex operators. Viewing diffeomorphisms as field redefinitions in the two-dimensional conformal field theory renders the calculation of their algebra straightforward. Next, we generalize the analysis to combinations of space-time anti-symmetric tensor gauge transformations and diffeomorphisms. We also point out a left-right split of the algebra combined with a twist that reproduces the C-bracket of double field theory. We further compare our derivation to an analysis in terms of marginal deformations as well as vertex operator algebras.
We investigate the mathematical structure of the world sheet in two-dimensional conformal field theories.
In this talk I give a preliminary account of original results, obtained in collaboration with John Ellis. Details and further elaboration will be presented in a forthcoming publication. We present a proposal for a non-critical (Liouville) string appr
We initiate the computation of the 2-loop quantum AdS_5 x S^5 string corrections on the example of a certain string configuration in S^5 related by an analytic continuation to a folded rotating string in AdS_5 in the ``long string limit. The 2-loop t
We show how to get a non-commutative product for functions on space-time starting from the deformation of the coproduct of the Poincare group using the Drinfeld twist. Thus it is easy to see that the commutative algebra of functions on space-time (R^
To classify the classical field theories with W-symmetry one has to classify the symplectic leaves of the corresponding W-algebra, which are the intersection of the defining constraint and the coadjoint orbit of the affine Lie algebra if the W-algebr