ﻻ يوجد ملخص باللغة العربية
An N=1--supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component-field formalism. By adopting a dimensional reduction procedure, the N=2--D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential.
We find self-dual vortex solutions in a Maxwell-Chern-Simons model with anomalous magnetic moment. From a recently developed N=2-supersymmetric extension, we obtain the proper Bogomolnyi equations together with a Higgs potential allowing both topological and non-topological phases in the theory.
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a
We study a $U(1) times U(1)$ gauge theory discussing its vortex solutions and supersymmetric extension. In our set-upon the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors v
The Maxwell-Chern-Simons gauge theory with charged scalar fields is analyzed at two loop level. The effective potential for the scalar fields is derived in the closed form, and studied both analytically and numerically. It is shown that the U(1) symm
We consider a large-N Chern-Simons theory for the attractive bosonic matter (Jackiw-Pi model) in the Hamiltonian collective-field approach based on the 1/N expansion. We show that the dynamics of low-lying density excitations around the ground-state