ﻻ يوجد ملخص باللغة العربية
The scaled inverse of a nonzero element $a(x)in mathbb{Z}[x]/f(x)$, where $f(x)$ is an irreducible polynomial over $mathbb{Z}$, is the element $b(x)in mathbb{Z}[x]/f(x)$ such that $a(x)b(x)=c pmod{f(x)}$ for the smallest possible positive integer scale $c$. In this paper, we investigate the scaled inverse of $(x^i-x^j)$ modulo cyclotomic polynomial of the form $Phi_{p^s}(x)$ or $Phi_{p^s q^t}(x)$, where $p, q$ are primes with $p<q$ and $s, t$ are positive integers. Our main results are that the coefficient size of the scaled inverse of $(x^i-x^j)$ is bounded by $p-1$ with the scale $p$ modulo $Phi_{p^s}(x)$, and is bounded by $q-1$ with the scale not greater than $q$ modulo $Phi_{p^s q^t}(x)$. Previously, the analogous result on cyclotomic polynomials of the form $Phi_{2^n}(x)$ gave rise to many lattice-based cryptosystems, especially, zero-knowledge proofs. Our result provides more flexible choice of cyclotomic polynomials in such cryptosystems. Along the way of proving the theorems, we also prove several properties of ${x^k}_{kinmathbb{Z}}$ in $mathbb{Z}[x]/Phi_{pq}(x)$ which might be of independent interest.
Two $q$-supercongruences of truncated basic hypergeometric series containing two free parameters are established by employing specific identities for basic hypergeometric series. The results partly extend two $q$-supercongruences that were earlier co
The type IIB supergravity AdS_3 x S^3 x T^4 background with mixed RR and NSNS 3-form fluxes is a near-horizon limit of a non-threshold bound state of D5-D1 and NS5-NS1 branes. The corresponding superstring world-sheet theory is expected to be integra
We derive the fermionic polynomial generalizations of the characters of the integrable perturbations $phi_{2,1}$ and $phi_{1,5}$ of the general minimal $M(p,p)$ conformal field theory by use of the recently discovered trinomial analogue of Baileys le
We prove a two-parameter family of $q$-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial. Crucial ingredients in our proof are George Andrews multiseries extension of the Watson transformation, and a Karlsson--Minton type
We present a study of transverse single-spin asymmetries (SSAs) in $p^uparrow pto J/psi,X$ and $p^uparrow pto D X$ within the framework of the generalized parton model (GPM), which includes both spin and transverse momentum effects, and show how they