ﻻ يوجد ملخص باللغة العربية
We reformulate the Thirring model in $D$ $(2 le D < 4)$ dimensions as a gauge theory by introducing $U(1)$ hidden local symmetry (HLS) and study the dynamical mass generation of the fermion through the Schwinger-Dyson (SD) equation. By virtue of such a gauge symmetry we can greatly simplify the analysis of the SD equation by taking the most appropriate gauge (``nonlocal gauge) for the HLS. In the case of even-number of (2-component) fermions, we find the dynamical fermion mass generation as the second order phase transition at certain fermion number, which breaks the chiral symmetry but preserves the parity in (2+1) dimensions ($D=3$). In the infinite four-fermion coupling (massless gauge boson) limit in (2+1) dimensions, the result coincides with that of the (2+1)-dimensional QED, with the critical number of the 4-component fermion being $N_{rm cr} = frac{128}{3pi^{2}}$. As to the case of odd-number (2-component) fermion in (2+1) dimensions, the regularization ambiguity on the induced Chern-Simons term may be resolved by specifying the regularization so as to preserve the HLS. Our method also applies to the (1+1) dimensions, the result being consistent with the exact solution. The bosonization mechanism in (1+1) dimensional Thirring model is also reproduced in the context of dual-transformed theory for the HLS.
We propose a novel gauge-invariant regularization for the perturbative chiral gauge theory.Our method consists of the two ingredients: use of the domain-wall fermion to describe a chiral fermion with Pauli-Villars regulators and application of the di
The content of two additional Ward identities exhibited by the $U(1)$ Higgs model is exploited. These novel Ward identities can be derived only when a pair of local composite operators providing a gauge invariant setup for the Higgs particle and the
The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, de
We apply a semi-classical method to compute the conformal field theory (CFT) data for the U(N)xU(N) non-abelian Higgs theory in four minus epsilon dimensions at its complex fixed point. The theory features more than one coupling and walking dynamics.
We argue that different formulations of hydrodynamics are related to uncertainties in the definitions of local thermodynamic and hydrodynamic variables. We show that this ambiguity can be resolved by viewing different formulations of hydrodynamics as