ﻻ يوجد ملخص باللغة العربية
We apply a semi-classical method to compute the conformal field theory (CFT) data for the U(N)xU(N) non-abelian Higgs theory in four minus epsilon dimensions at its complex fixed point. The theory features more than one coupling and walking dynamics. Given our charge configuration, we identify a family of corresponding operators and compute their scaling dimensions which remarkably agree with available results from conventional perturbation theory validating the use of the state-operator correspondence for a complex CFT.
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(barphiphi)^2$ theory may be computed semiclassically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$, and this was verified to two
We holomorphically embed nonlinear sigma models (NLSMs) on $SO(2N)/U(N)$ and $Sp(N)/U(N)$ in the hyper-K{a}hler (HK) NLSM on the cotangent bundle of the Grassmann manifold $T^ast G_{2N,N}$, which is defined by $G_{N+M,M}=frac{SU(N+M)}{SU(N)times SU(M
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS
This is an edited version of an unpublished 1979 EFI (U. Chicago) preprint: The U(N) lattice gauge theory in 2-dimensions can be considered as the statistical mechanics of a Coulomb gas on a circle in a constant electric field. The large N limit of t
We study vacua, walls and three-pronged junctions of mass-deformed nonlinear sigma models on $SO(2N)/U(N)$ and $Sp(N)/U(N)$ for generic $N$. We review and discuss the on-shell component Lagrangians of the ${mathcal{N}}=2$ nonlinear sigma model on the