ترغب بنشر مسار تعليمي؟ اضغط هنا

Charging the Walking U(N)$times$U(N) Higgs Theory as a Complex CFT

188   0   0.0 ( 0 )
 نشر من قبل Jahmall Matteo Bersini
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply a semi-classical method to compute the conformal field theory (CFT) data for the U(N)xU(N) non-abelian Higgs theory in four minus epsilon dimensions at its complex fixed point. The theory features more than one coupling and walking dynamics. Given our charge configuration, we identify a family of corresponding operators and compute their scaling dimensions which remarkably agree with available results from conventional perturbation theory validating the use of the state-operator correspondence for a complex CFT.



قيم البحث

اقرأ أيضاً

114 - I. Jack , D.R.T. Jones 2021
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(barphiphi)^2$ theory may be computed semiclassically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$, and this was verified to two loop order in perturbation theory at leading and subleading $n$. This result was subsequently generalised to operators of fixed charge $Q$ in $O(N)$ theory and verified up to four loops in perturbation theory at leading and subleading $Q$. More recently, similar semiclassical calculations have been performed for the classically scale-invariant $U(N)times U(N)$ theory in four dimensions, and verified up to two loops, once again at leading and subleading $Q$. Here we extend this verification to four loops. We also consider the corresponding classically scale-invariant theory in three dimensions, similarly verifying the leading and subleading semiclassical results up to four loops in perturbation theory.
128 - Taegyu Kim , Sunyoung Shin 2019
We holomorphically embed nonlinear sigma models (NLSMs) on $SO(2N)/U(N)$ and $Sp(N)/U(N)$ in the hyper-K{a}hler (HK) NLSM on the cotangent bundle of the Grassmann manifold $T^ast G_{2N,N}$, which is defined by $G_{N+M,M}=frac{SU(N+M)}{SU(N)times SU(M )times U(1)}$, in the ${mathcal{N}}=1$ superspace formalism and construct three-pronged junctions of the mass-deformed NLSMs (mNLSMs) in the moduli matrix formalism (MMF) by using a recently proposed method.
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS Y-breaking parameter~$deltaepsilon$. This quantity was vigorously studied recently by Fujimori et al. using a semi-classical approximation based on the bion, motivated by a possible semi-classical picture on the infrared renormalon. In our calculation, we find that the parameter~$deltaepsilon$ receives renormalization and, after this renormalization, the vacuum energy becomes ultraviolet finite. To the next-to-leading order of the $1/N$ expansion, we find that the vacuum energy normalized by the radius of the~$S^1$, $R$, $RE(deltaepsilon)$ behaves as inverse powers of~$Lambda R$ for~$Lambda R$ small, where $Lambda$ is the dynamical scale. Since $Lambda$ is related to the renormalized t~Hooft coupling~$lambda_R$ as~$Lambdasim e^{-2pi/lambda_R}$, to the order of the $1/N$ expansion we work out, the vacuum energy is a purely non-perturbative quantity and has no well-defined weak coupling expansion in~$lambda_R$.
142 - Spenta R. Wadia 2012
This is an edited version of an unpublished 1979 EFI (U. Chicago) preprint: The U(N) lattice gauge theory in 2-dimensions can be considered as the statistical mechanics of a Coulomb gas on a circle in a constant electric field. The large N limit of t his system is discussed and compared with exact answers for finite N. Near the fixed points of the renormalization group and especially in the critical region where one can define a continuum theory, computations in the thermodynamic limit $(N rightarrow infty)$ are in remarkable agreement with those for finite and small N. However, in the intermediate coupling region the thermodynamic computation, unlike the one for finite N, shows a continuous phase transition. This transition seems to be a pathology of the infinite N limit and in this simple model has no bearing on the physical continuum limit.
We study vacua, walls and three-pronged junctions of mass-deformed nonlinear sigma models on $SO(2N)/U(N)$ and $Sp(N)/U(N)$ for generic $N$. We review and discuss the on-shell component Lagrangians of the ${mathcal{N}}=2$ nonlinear sigma model on the Grassmann manifold, which are obtained in the ${mathcal{N}}=1$ superspace formalism and in the harmonic superspace formalism. We also show that the K{a}hler potential of the ${mathcal{N}}=2$ nonlinear sigma model on the complex projective space, which is obtained in the projective superspace formalism, is equivalent to the K{a}hler potential of the ${mathcal{N}}=2$ nonlinear sigma model with the Fayet-Iliopoulos parameters $c^a=(0,0,c=1)$ on the complex projective space, which is obtained in the ${mathcal{N}}=1$ superspace formalism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا