ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel regularization of chiral gauge theory

64   0   0.0 ( 0 )
 نشر من قبل Yu Hamada
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel gauge-invariant regularization for the perturbative chiral gauge theory.Our method consists of the two ingredients: use of the domain-wall fermion to describe a chiral fermion with Pauli-Villars regulators and application of the di- mensional regularization only to the gauge field. This regularization is implemented in the Lagrangian level, unlike other gauge-invariant regularizations (eg. the covariant regularizations). We show that the Abelian (fermion number) anomaly is reproduced correctly in this formulation. We also show that once we add the counter terms to the full theory, then the renormalization in the chiral gauge theory is automatically achieved.



قيم البحث

اقرأ أيضاً

We reformulate the Thirring model in $D$ $(2 le D < 4)$ dimensions as a gauge theory by introducing $U(1)$ hidden local symmetry (HLS) and study the dynamical mass generation of the fermion through the Schwinger-Dyson (SD) equation. By virtue of such a gauge symmetry we can greatly simplify the analysis of the SD equation by taking the most appropriate gauge (``nonlocal gauge) for the HLS. In the case of even-number of (2-component) fermions, we find the dynamical fermion mass generation as the second order phase transition at certain fermion number, which breaks the chiral symmetry but preserves the parity in (2+1) dimensions ($D=3$). In the infinite four-fermion coupling (massless gauge boson) limit in (2+1) dimensions, the result coincides with that of the (2+1)-dimensional QED, with the critical number of the 4-component fermion being $N_{rm cr} = frac{128}{3pi^{2}}$. As to the case of odd-number (2-component) fermion in (2+1) dimensions, the regularization ambiguity on the induced Chern-Simons term may be resolved by specifying the regularization so as to preserve the HLS. Our method also applies to the (1+1) dimensions, the result being consistent with the exact solution. The bosonization mechanism in (1+1) dimensional Thirring model is also reproduced in the context of dual-transformed theory for the HLS.
We study U(1) gauge theory on a 4d non-commutative torus, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d=2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter theta, which provides evidence for a possible continuum theory. In the weak coupling symmetric phase, the dispersion relation involves a negative IR-singular term, which is responsible for the observed phase transition.
We propose a new framework for simulating $text{U}(k)$ Yang-Mills theory on a universal quantum computer. This construction uses the orbifold lattice formulation proposed by Kaplan, Katz, and Unsal, who originally applied it to supersymmetric gauge t heories. Our proposed approach yields a novel perspective on quantum simulation of quantum field theories, carrying certain advantages over the usual Kogut-Susskind formulation. We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories, from glueball measurements to AdS/CFT, making use of a variety of quantum information techniques including qubitization, quantum signal processing, Jordan-Lee-Preskill bounds, and shadow tomography. The generalizations to certain supersymmetric Yang-Mills theories appear to be straightforward, providing a path towards the quantum simulation of quantum gravity via holographic duality.
We describe a unitary matrix model which is constructed from discrete analogs of the usual projective modules over the noncommutative torus and use it to construct a lattice version of noncommutative gauge theory. The model is a discretization of the noncommutative gauge theories that arise from toroidal compactification of Matrix theory and it includes a recent proposal for a non-perturbative definition of noncommutative Yang-Mills theory in terms of twisted reduced models. The model is interpreted as a manifestly star-gauge invariant lattice formulation of noncommutative gauge theory, which reduces to ordinary Wilson lattice gauge theory for particular choices of parameters. It possesses a continuum limit which maintains both finite spacetime volume and finite noncommutativity scale. We show how the matrix model may be used for studying the properties of noncommutative gauge theory.
We solve a new chiral Random Two-Matrix Theory by means of biorthogonal polynomials for any matrix size $N$. By deriving the relevant kernels we find explicit formulas for all $(n,k)$-point spectral (mixed or unmixed) correlation functions. In the mi croscopic limit we find the corresponding scaling functions, and thus derive all spectral correlators in this limit as well. We extend these results to the ordinary (non-chiral) ensembles, and also there provide explicit solutions for any finite size $N$, and in the microscopic scaling limit. Our results give the general analytical expressions for the microscopic correlation functions of the Dirac operator eigenvalues in theories with imaginary baryon and isospin chemical potential, and can be used to extract the tree-level pion decay constant from lattice gauge theory configurations. We find exact agreement with previous computations based on the low-energy effective field theory in the two special cases where comparisons are possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا