ترغب بنشر مسار تعليمي؟ اضغط هنا

New N=1 Extended Superconformal Algebras with Two and Three Generators

156   0   0.0 ( 0 )
 نشر من قبل Andreas Honecker
 تاريخ النشر 1992
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider extensions of the super Virasoro algebra by one and two super primary fields. Using a non-explicitly covariant approach we compute all SW-algebras with one generator of dimension up to 7 in addition to the super Virasoro field. In complete analogy to W-algebras with two generators most results can be classified using the representation theory of the super Virasoro algebra. Furthermore, we find that the SW(3/2, 11/2)-algebra can be realized as a subalgebra of SW(3/2, 5/2) at c = 10/7. We also construct some new SW-algebras with three generators, namely SW(3/2, 3/2, 5/2), SW(3/2, 2, 2) and SW(3/2, 2, 5/2).



قيم البحث

اقرأ أيضاً

In this paper we consider the representation theory of N=1 Super-W-algebras with two generators for conformal dimension of the additional superprimary field between two and six. In the superminimal case our results coincide with the expectation from the ADE-classification. For the parabolic algebras we find a finite number of highest weight representations and an effective central charge $tilde c = 3/2$. Furthermore we show that most of the exceptional algebras lead to new rational models with $tilde c > 3/2$. The remaining exceptional cases show a new `mixed structure. Besides a continuous branch of representations discrete values of the highest weight exist, too.
In 4d $mathcal{N}=1$ superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara-Zumino multiplet. In this work we study the most general form of three-point functions involving two Ferrara-Zumino multiplets and a third generic multiplet. We solve the constraints imposed by conservation in superspace and show that non-trivial solutions can only be found if the third multiplet is R-neutral and transforms in suitable Lorentz representations. In the process we give a prescription for counting independent tensor structures in superconformal three-point functions. Finally, we set the Grassmann coordinates of the Ferrara-Zumino multiplets to zero and extract all three-point functions involving two R-currents and a third conformal primary. Our results pave the way for bootstrapping the correlation function of four R-currents in 4d $mathcal{N}=1$ SCFTs.
Following a recent work of Dolan and Osborn, we consider superconformal indices of four dimensional ${mathcal N}=1$ supersymmetric field theories related by an electric-magnetic duality with the SP(2N) gauge group and fixed rank flavour groups. For t he SP(2) (or SU(2)) case with 8 flavours, the electric theory has index described by an elliptic analogue of the Gauss hypergeometric function constructed earlier by the first author. Using the $E_7$-root system Weyl group transformations for this function, we build a number of dual magnetic theories. One of them was originally discovered by Seiberg, the second model was built by Intriligator and Pouliot, the third one was found by Csaki et al. We argue that there should be in total 72 theories dual to each other through the action of the coset group $W(E_7)/S_8$. For the general $SP(2N), N>1,$ gauge group, a similar multiple duality takes place for slightly more complicated flavour symmetry groups. Superconformal indices of the corresponding theories coincide due to the Rains identity for a multidimensional elliptic hypergeometric integral associated with the $BC_N$-root system.
Quaternion Kahler manifolds are known to be the target spaces for matter hypermultiplets coupled to N=2 supergravity. It is also known that there is a one-to-one correspondence between 4n-dimensional quaternion Kahler manifolds and those 4(n+1)-dimen sional hyperkahler spaces which are the target spaces for rigid superconformal hypermultiplets (such spaces are called hyperkahler cones). In this paper we present a projective-superspace construction to generate a hyperkahler cone M^{4(n+1)}_H of dimension 4(n+1) from a 2n-dimensional real analytic Kahler-Hodge manifold M^{2n}_K. The latter emerges as a maximal Kahler submanifold of the 4n-dimensional quaternion Kahler space M^{4n}_Q such that its Swann bundle coincides with M^{4(n+1)}_H. Our approach should be useful for the explicit construction of new quaternion Kahler metrics. The results obtained are also of interest, e.g., in the context of supergravity reduction N=2 --> N=1, or alternatively from the point of view of embedding N=1 matter-coupled supergravity into an N=2 theory.
61 - Jeong-Hyuck Park 1997
N=1, d=4 superconformal group is studied and its representations are discussed. Under superconformal transformations, left invariant derivatives and some class of superfields, including supercurrents, are shown to follow these representations. In oth er words, these superfields are quasi-primary by analogy with two dimensional conformal field theory. Based on these results, we find the general forms of the two-point and the three-point correlation functions of the quasi-primary superfields in a group theoretical way. In particular, we show that the two-point function of the supercurrent is unique up to a constant and the general form of the three-point function of the supercurrent has two free parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا