ترغب بنشر مسار تعليمي؟ اضغط هنا

Representations of $N=1$ Extended Superconformal Algebras with Two Generators

67   0   0.0 ( 0 )
 نشر من قبل Ralf Huebel
 تاريخ النشر 1992
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the representation theory of N=1 Super-W-algebras with two generators for conformal dimension of the additional superprimary field between two and six. In the superminimal case our results coincide with the expectation from the ADE-classification. For the parabolic algebras we find a finite number of highest weight representations and an effective central charge $tilde c = 3/2$. Furthermore we show that most of the exceptional algebras lead to new rational models with $tilde c > 3/2$. The remaining exceptional cases show a new `mixed structure. Besides a continuous branch of representations discrete values of the highest weight exist, too.



قيم البحث

اقرأ أيضاً

In this paper we consider extensions of the super Virasoro algebra by one and two super primary fields. Using a non-explicitly covariant approach we compute all SW-algebras with one generator of dimension up to 7 in addition to the super Virasoro fie ld. In complete analogy to W-algebras with two generators most results can be classified using the representation theory of the super Virasoro algebra. Furthermore, we find that the SW(3/2, 11/2)-algebra can be realized as a subalgebra of SW(3/2, 5/2) at c = 10/7. We also construct some new SW-algebras with three generators, namely SW(3/2, 3/2, 5/2), SW(3/2, 2, 2) and SW(3/2, 2, 5/2).
Following a recent work of Dolan and Osborn, we consider superconformal indices of four dimensional ${mathcal N}=1$ supersymmetric field theories related by an electric-magnetic duality with the SP(2N) gauge group and fixed rank flavour groups. For t he SP(2) (or SU(2)) case with 8 flavours, the electric theory has index described by an elliptic analogue of the Gauss hypergeometric function constructed earlier by the first author. Using the $E_7$-root system Weyl group transformations for this function, we build a number of dual magnetic theories. One of them was originally discovered by Seiberg, the second model was built by Intriligator and Pouliot, the third one was found by Csaki et al. We argue that there should be in total 72 theories dual to each other through the action of the coset group $W(E_7)/S_8$. For the general $SP(2N), N>1,$ gauge group, a similar multiple duality takes place for slightly more complicated flavour symmetry groups. Superconformal indices of the corresponding theories coincide due to the Rains identity for a multidimensional elliptic hypergeometric integral associated with the $BC_N$-root system.
61 - Jeong-Hyuck Park 1997
N=1, d=4 superconformal group is studied and its representations are discussed. Under superconformal transformations, left invariant derivatives and some class of superfields, including supercurrents, are shown to follow these representations. In oth er words, these superfields are quasi-primary by analogy with two dimensional conformal field theory. Based on these results, we find the general forms of the two-point and the three-point correlation functions of the quasi-primary superfields in a group theoretical way. In particular, we show that the two-point function of the supercurrent is unique up to a constant and the general form of the three-point function of the supercurrent has two free parameters.
General 1-point toric blocks in all sectors of N=1 superconformal field theories are analyzed. The recurrence relations for blocks coefficients are derived by calculating their residues and large $Delta$ asymptotics.
We study the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries, which potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that this classification is equivalen t to the solution of a set of polynomial equations by using an integrability condition for the central charge, scale invariance, constraints coming from demanding single-valuedness of physical quantities on the Coulomb branch, and properties of massless BPS states at singularities. We find solutions corresponding to lagrangian scale invariant theories--including the scale invariant G_2 theory not found before in the literature--as well as many new isolated solutions (having no marginal deformations). All our scale-invariant RSK geometries are consistent with an interpretation as effective theories of N=2 superconformal field theories, and, where we can check, turn out to exist as quantum field theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا