ﻻ يوجد ملخص باللغة العربية
Quaternion Kahler manifolds are known to be the target spaces for matter hypermultiplets coupled to N=2 supergravity. It is also known that there is a one-to-one correspondence between 4n-dimensional quaternion Kahler manifolds and those 4(n+1)-dimensional hyperkahler spaces which are the target spaces for rigid superconformal hypermultiplets (such spaces are called hyperkahler cones). In this paper we present a projective-superspace construction to generate a hyperkahler cone M^{4(n+1)}_H of dimension 4(n+1) from a 2n-dimensional real analytic Kahler-Hodge manifold M^{2n}_K. The latter emerges as a maximal Kahler submanifold of the 4n-dimensional quaternion Kahler space M^{4n}_Q such that its Swann bundle coincides with M^{4(n+1)}_H. Our approach should be useful for the explicit construction of new quaternion Kahler metrics. The results obtained are also of interest, e.g., in the context of supergravity reduction N=2 --> N=1, or alternatively from the point of view of embedding N=1 matter-coupled supergravity into an N=2 theory.
We construct superconformal gauged sigma models with extended rigid supersymmetry in three dimensions. Those with N>4 have necessarily flat targets, but the models with N leq 4 admit non-flat targets, which are cones with appropriate Sasakian base ma
We develop superspace techniques to construct general off-shell N=1,2,3,4 superconformal sigma-models in three space-time dimensions. The most general N=3 and N=4 superconformal sigma-models are constructed in terms of N=2 chiral superfields. Several
In this paper we consider extensions of the super Virasoro algebra by one and two super primary fields. Using a non-explicitly covariant approach we compute all SW-algebras with one generator of dimension up to 7 in addition to the super Virasoro fie
We analyse the geometry of four-dimensional bosonic manifolds arising within the context of $N=4, D=1$ supersymmetry. We demonstrate that both cases of general hyper-Kahler manifolds, i.e. those with translation or rotational isometries, may be super
We discuss additional supersymmetries for N = (2, 2) supersymmetric non-linear sigma models described by left and right semichiral superfields.