ﻻ يوجد ملخص باللغة العربية
Three-flavor neutrino oscillations in matter can be described by three effective neutrino masses $widetilde{m}^{}_i$ (for $i = 1, 2, 3$) and the effective mixing matrix $V^{}_{alpha i}$ (for $alpha = e, mu, tau$ and $i = 1, 2, 3$). When the matter parameter $a equiv 2sqrt{2} G^{}_{rm F} N^{}_e E$ is taken as an independent variable, a complete set of first-order ordinary differential equations for $widetilde{m}^2_i$ and $|V^{}_{alpha i}|^2$ have been derived in the previous works. In the present paper, we point out that such a system of differential equations possesses both the continuous symmetries characterized by one-parameter Lie groups and the discrete symmetry associated with the permutations of three neutrino mass eigenstates. The implications of these symmetries for solving the differential equations and looking for differential invariants are discussed.
We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities
This paper aims at presenting the first steps towards a formulation of the Exact Renormalization Group Equation in the Hopf algebra setting of Connes and Kreimer. It mostly deals with some algebraic preliminaries allowing to formulate perturbative re
Expressions for neutrino oscillations contain a high degree of symmetry, but typical forms for the oscillation probabilities mask these symmetries. We elucidate the $2^7=128$ symmetries of the vacuum parameters and draw connections to the choice of d
We consider a class of models for the relativistic covariant wave packets which can be used as asymptotically free in and out states in the quantum field theoretical formalisms for description of the neutrino flavor oscillation phenomenon. We demonst
We analyze status of ${bf C}$, ${bf P}$ and ${bf T}$ discrete symmetries in application to neutron-antineutron transitions breaking conservation of baryon charge ${cal B}$ by two units. At the level of free particles all these symmetries are preserve