ﻻ يوجد ملخص باللغة العربية
Superpotentials in ${cal N}=2$ supersymmetric classical mechanics are no more than the Hamilton characteristic function of the Hamilton-Jacobi theory for the associated purely bosonic dynamical system. Modulo a global sign, there are several superpotentials ruling Hamilton-Jacobi separable supersymmetric systems, with a number of degrees of freedom greater than one. Here, we explore how supersymmetry and separability are entangled in the quantum version of this kind of system. We also show that the planar anisotropic harmonic oscillator and the two-Newtonian centers of force problem admit two non-equivalent supersymmetric extensions with different ground states and Yukawa couplings.
Two known 2-dim SUSY quantum mechanical constructions - the direct generalization of SUSY with first-order supercharges and Higher order SUSY with second order supercharges - are combined for a class of 2-dim quantum models, which {it are not amenabl
Out-of-time-order correlator (OTOC) $langle [x(t),p]^2 rangle $ in an inverted harmonic oscillator (IHO) in one-dimensional quantum mechanics exhibits remarkable properties. The quantum Lyapunov exponent computed through the OTOC precisely agrees wit
We study N=1 supersymmetric SU(2) gauge theory in four dimensions with a large number of massless quarks. We argue that effective superpotentials as a function of local gauge-invariant chiral fields should exist for these theories. We show that altho
The problem of building supersymmetry in the quantum mechanics of two Coulombian centers of force is analyzed. It is shown that there are essentially two ways of proceeding. The spectral problems of the SUSY (scalar) Hamiltonians are quite similar an
General non-commutative supersymmetric quantum mechanics models in two and three dimensions are constructed and some two and three dimensional examples are explicitly studied. The structure of the theory studied suggest other possible applications in