ﻻ يوجد ملخص باللغة العربية
Out-of-time-order correlator (OTOC) $langle [x(t),p]^2 rangle $ in an inverted harmonic oscillator (IHO) in one-dimensional quantum mechanics exhibits remarkable properties. The quantum Lyapunov exponent computed through the OTOC precisely agrees with the classical one. Besides, it does not show any quantum fluctuations for arbitrary states. Hence, the OTOC may be regarded as ideal indicators of the butterfly effect in the IHO. Since IHOs are ubiquitous in physics, these properties of the OTOCs might be seen in various situations too. In order to clarify this point, as a first step, we investigate the OTOCs in one dimensional quantum mechanics with polynomial potentials, which exhibit butterfly effects around the peak of the potential in classical mechanics. We find two situations in which the OTOCs show exponential growths reproducing the classical Lyapunov exponent of the peak. The first one, which is obvious, is using suitably localized states near the peak and the second one is taking a double scaling limit akin to the non-critical string theories.
Classical particle motions in an inverse harmonic potential show the exponential sensitivity to initial conditions, where the Lyapunov exponent $lambda_L$ is uniquely fixed by the shape of the potential. Hence, if we naively apply the bound on the Ly
Two known 2-dim SUSY quantum mechanical constructions - the direct generalization of SUSY with first-order supercharges and Higher order SUSY with second order supercharges - are combined for a class of 2-dim quantum models, which {it are not amenabl
Recently the bound on the Lyapunov exponent $lambda_L le 2pi T/ hbar$ in thermal quantum systems was conjectured by Maldacena, Shenker, and Stanford. If we naively apply this bound to a system with a fixed Lyapunov exponent $lambda_L$, it might predi
Superpotentials in ${cal N}=2$ supersymmetric classical mechanics are no more than the Hamilton characteristic function of the Hamilton-Jacobi theory for the associated purely bosonic dynamical system. Modulo a global sign, there are several superpot
An approach to study a generalization of the classical-quantum transition for general systems is proposed. In order to develop the idea, a deformation of the ladder operators algebra is proposed that contains a realization of the quantum group $SU(2)