ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting Classical Lyapunov Exponent from One-Dimensional Quantum Mechanics

85   0   0.0 ( 0 )
 نشر من قبل Takeshi Morita
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Takeshi Morita




اسأل ChatGPT حول البحث

Out-of-time-order correlator (OTOC) $langle [x(t),p]^2 rangle $ in an inverted harmonic oscillator (IHO) in one-dimensional quantum mechanics exhibits remarkable properties. The quantum Lyapunov exponent computed through the OTOC precisely agrees with the classical one. Besides, it does not show any quantum fluctuations for arbitrary states. Hence, the OTOC may be regarded as ideal indicators of the butterfly effect in the IHO. Since IHOs are ubiquitous in physics, these properties of the OTOCs might be seen in various situations too. In order to clarify this point, as a first step, we investigate the OTOCs in one dimensional quantum mechanics with polynomial potentials, which exhibit butterfly effects around the peak of the potential in classical mechanics. We find two situations in which the OTOCs show exponential growths reproducing the classical Lyapunov exponent of the peak. The first one, which is obvious, is using suitably localized states near the peak and the second one is taking a double scaling limit akin to the non-critical string theories.



قيم البحث

اقرأ أيضاً

78 - Takeshi Morita 2018
Classical particle motions in an inverse harmonic potential show the exponential sensitivity to initial conditions, where the Lyapunov exponent $lambda_L$ is uniquely fixed by the shape of the potential. Hence, if we naively apply the bound on the Ly apunov exponent $lambda_L le 2pi T/ hbar$ to this system, it predicts the existence of the bound on temperature (the lowest temperature) $T ge hbar lambda_L/ 2pi$ and the system cannot be taken to be zero temperature when $hbar eq 0$. This seems a puzzle because particle motions in an inverse harmonic potential should be realized without introducing any temperature but this inequality does not allow it. In this article, we study this problem in $N$ non-relativistic free fermions in an inverse harmonic potential ($c=1$ matrix model). We find that thermal radiation is {em induced} when we consider the system in a semi-classical regime even though the system is not thermal at the classical level. This is analogous to the thermal radiation of black holes, which are classically non-thermal but behave as thermal baths quantum mechanically. We also show that the temperature of the radiation in our model saturates the inequality, and thus, the system saturates the bound on the Lyapunov exponent, although the system is free and integrable. Besides, this radiation is related to acoustic Hawking radiation of the fermi fluid.
Two known 2-dim SUSY quantum mechanical constructions - the direct generalization of SUSY with first-order supercharges and Higher order SUSY with second order supercharges - are combined for a class of 2-dim quantum models, which {it are not amenabl e} to separation of variables. The appropriate classical limit of quantum systems allows us to construct SUSY-extensions of original classical scalar Hamiltonians. Special emphasis is placed on the symmetry properties of the models thus obtained - the explicit expressions of quantum symmetry operators and of classical integrals of motion are given for all (scalar and matrix) components of SUSY-extensions. Using Grassmanian variables, the symmetry operators and classical integrals of motion are written in a unique form for the whole Superhamiltonian. The links of the approach to the classical Hamilton-Jacobi method for related flipped potentials are established.
90 - Takeshi Morita 2019
Recently the bound on the Lyapunov exponent $lambda_L le 2pi T/ hbar$ in thermal quantum systems was conjectured by Maldacena, Shenker, and Stanford. If we naively apply this bound to a system with a fixed Lyapunov exponent $lambda_L$, it might predi ct the existence of the lower bound on temperature $T ge hbar lambda_L/ 2pi $. Particularly, it might mean that chaotic systems cannot be zero temperature quantum mechanically. Even classical dynamical systems, which are deterministic, might exhibit thermal behaviors once we turn on quantum corrections. We elaborate this possibility by investigating semi-classical particle motions near the hyperbolic fixed point and show that indeed quantum corrections may induce energy emission which obeys a Boltzmann distribution. We also argue that this emission is related to acoustic Hawking radiation in quantum fluid. Besides, we discuss when the bound is saturated and show that a particle motion in an inverse harmonic potential and $c=1$ matrix model may saturate the bound although they are integrable.
Superpotentials in ${cal N}=2$ supersymmetric classical mechanics are no more than the Hamilton characteristic function of the Hamilton-Jacobi theory for the associated purely bosonic dynamical system. Modulo a global sign, there are several superpot entials ruling Hamilton-Jacobi separable supersymmetric systems, with a number of degrees of freedom greater than one. Here, we explore how supersymmetry and separability are entangled in the quantum version of this kind of system. We also show that the planar anisotropic harmonic oscillator and the two-Newtonian centers of force problem admit two non-equivalent supersymmetric extensions with different ground states and Yukawa couplings.
201 - Jose L. Cortes , J. Gamboa 2020
An approach to study a generalization of the classical-quantum transition for general systems is proposed. In order to develop the idea, a deformation of the ladder operators algebra is proposed that contains a realization of the quantum group $SU(2) _q$ as a particular case. In this deformation Plancks constant becomes an operator whose eigenvalues approach $hbar $ for small values of $n$ (the eigenvalue of the number operator), and zero for large values of $n$ (the system is classicalized).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا