ﻻ يوجد ملخص باللغة العربية
We make a detailed study of the unification of gauge couplings in the MSSM with large extra dimensions. We find some scenarios where unification can be achieved (with the strong coupling constant at the Z mass within one standard deviation of the experimental value) with both the compactification scale and the SUSY breaking scale in the few TeV range. No enlargement of the gauge group or particle content is needed. One particularly interesting scenario is when the SUSY breaking scale is larger than the compactification scale, but both are small enough to be probed at the CERN LHC. Unification in two scales scenarios is also investigated and found to give results within the LHC.
We propose gauge-Higgs unification in fuzzy extra dimensions as a possible solution to the Higgs naturalness problem. In our approach, the fuzzy extra dimensions are created spontaneously as a vacuum solution of certain four-dimensional gauge theory.
We compute the couplings of the zero modes and first excited states of gluons, $W$s, $Z$ gauge bosons, as well as the Higgs, to the zero modes and first excited states of the third generation quarks, in an RS Gauge-Higgs unification scenario based on
The Higgs boson is unified with gauge fields in the gauge-Higgs unification. The $SO(5) times U(1)$ gauge-Higgs electroweak unification in the Randall-Sundrum warped space yields almost the same phenomenology at low energies as the standard model, an
The apparent unification of gauge couplings around 10^16 GeV is one of the strong arguments in favor of Supersymmetric extensions of the Standard Model (SM). In this contribution two new analyses of the gauge coupling running, the latter using in con
We investigate gauge coupling unification at 2-loops for theories with 5 extra vectorlike SU(5) fundamentals added to the MSSM. This is a borderline case where unification is only predicted in certain regions of parameter space. We establish a lower