ترغب بنشر مسار تعليمي؟ اضغط هنا

Collider Phenomenology of Gauge-Higgs Unification Scenarios in Warped Extra Dimensions

131   0   0.0 ( 0 )
 نشر من قبل Anibal Medina
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the couplings of the zero modes and first excited states of gluons, $W$s, $Z$ gauge bosons, as well as the Higgs, to the zero modes and first excited states of the third generation quarks, in an RS Gauge-Higgs unification scenario based on a bulk $SO(5)times U(1)_X$ gauge symmetry, with gauge and fermion fields propagating in the bulk. Using the parameter space consistent with electroweak precision tests and radiative electroweak symmetry breaking, we study numerically the dependence of these couplings on the parameters of our model. Furthermore, after emphasizing the presence of light excited states of the top quark, which couple strongly to the Kaluza Klein gauge bosons, the associated collider phenomenology is analyzed. In particular, we concentrate on the possible detection of the first excited state of the top, $t^1$, which tends to have a higher mass than the ones accessible via regular QCD production processes. We stress that the detection of these particles is still possible due to an increase in the pair production of $t^1$ induced by the first excited state of the gluon, $G^1$.

قيم البحث

اقرأ أيضاً

We propose gauge-Higgs unification in fuzzy extra dimensions as a possible solution to the Higgs naturalness problem. In our approach, the fuzzy extra dimensions are created spontaneously as a vacuum solution of certain four-dimensional gauge theory. As an example, we construct a model which has a fuzzy torus as its vacuum. The Higgs field in our model is associated with the Wilson loop wrapped on the fuzzy torus. We show that the quadratic divergence in the mass of the Higgs field in the one-loop effective potential is absent. We then argue based on symmetries that the quantum corrections to the Higgs mass is suppressed including all loop contributions. We also consider a realization on the worldvolume theory of D3-branes probing $C^3/(Z_N times Z_N)$ orbifold with discrete torsion.
We perform a detailed investigation of a Grand Unified Theory (GUT)-inspired theory of gauge-Higgs unification. Scanning the models parameter space with adapted numerical techniques, we contrast the scenarios low energy limit with existing SM and col lider search constraints. We discuss potential modifications of di-Higgs phenomenology at hadron colliders as sensitive probes of the gauge-like character of the Higgs self-interactions and find that for phenomenologically viable parameter choices modifications of the order of 20% compared to the SM cross section can be expected. While these modifications are challenging to observe at the LHC, a future 100 TeV hadron collider might be able to constrain the scenario through more precise di-Higgs measurements. We point out alternative signatures that can be employed to constrain this model in the near future.
149 - Mariana Frank , Beste Korutlu , 2011
We study a warped extra-dimension scenario where the Standard Model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Ev en without a fourth family, these couplings will be generically misaligned with respect to the SM fermion mass matrices. The presence of the fourth family typically enhances the misalignment effects and we show that one should expect them to be highly non-symmetrical in the ${(34)}$ inter-generational mixing. The radiative corrections from the new fermions and their flavor violating couplings to the Higgs affect negligibly known experimental precision measurements such as the oblique parameters and $Zto b {bar b}$ or $Z to mu^+ mu^-$. On the other hand, $Delta F=1,2$ processes, mediated by tree-level Higgs exchange, as well as radiative corrections to $b to s gamma$ and $mu to egamma$ put some generic pressure on the allowed size of the flavor violating couplings. But more importantly, these couplings will alter the Higgs decay patterns as well as those of the new fermions, and produce very interesting new signals associated to Higgs phenomenology in high energy colliders. These might become very important indirect signals for these type of models as they would be present even when the KK mass scale is high and no heavy KK particle is discovered.
In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range 120 GeV -- 290 GeV, provided that the spacetime structure is determined at the Planck scale. C ouplings of quarks and leptons to gauge bosons and their Kaluza-Klein (KK) excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the KK excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of $10^{-8}$, $10^{-6}$ and $10^{-2}$ for $mu$-$e$, $tau$-$e$ and $t$-$e$, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor $|cos onehalf theta_W|$ where $theta_W$ is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.
In the context of a warped extra-dimension with Standard Model fields in the bulk, we obtain the general flavor structure of the Higgs couplings to fermions. These couplings will be generically misaligned with respect to the fermion mass matrix, prod ucing large and potentially dangerous flavor changing neutral currents (FCNCs). As recently pointed out in [arXiv:0906.1542], a similar effect is expected from the point of view of a composite Higgs sector, which corresponds to a 4D theory dual to the 5D setup by the AdS-CFT correspondence. We also point out that the effect is independent of the geographical nature of the Higgs (bulk or brane localized), and specifically that it does not go away as the Higgs is pushed towards the IR boundary. The FCNCs mediated by a light enough Higgs (specially their contribution to $epsilon_K$) could become of comparable size as the ones coming from the exchange of Kaluza-Klein (KK) gluons. Moreover, both sources of flavor violation are complementary since they have inverse dependence on the 5D Yukawa couplings, such that we cannot decouple the flavor violation effects by increasing or decreasing these couplings. We also find that for KK scales of a few TeV, the Higgs couplings to third generation fermions could experience suppressions of up to 40% while the rest of diagonal couplings would suffer much milder corrections. Potential LHC signatures like the Higgs flavor violating decays $htomutau$ or $hto tc$, or the exotic top decay channel $tto c h$, are finally addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا