ﻻ يوجد ملخص باللغة العربية
In higher-curvature inflation models ($R+alpha_n R^n$), we study a parametric preheating of a scalar field $chi$ coupled non-minimally to a spacetime curvature $R$ ($xi R chi^2$). In the case of $R^2$-inflation model, efficient preheating becomes possible for rather small values of $xi$, i.e. $|xi|< several. Although the maximal fluctuation $sqrt{< chi^2 >}_{max} approx 2 times10^{17}$ GeV for $xi approx -4$ is almost the same as the chaotic inflation model with a non-minimally coupled $chi$ field, the growth rate of the fluctuation becomes much larger and efficient preheating is realized. We also investigate preheating for $R^4$ model and find that the maximal fluctuation is $sqrt{< chi^2 >}_{max} approx 8 times 10^{16}$ GeV for $xi approx -35$.
We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains $phi^4$ term as well as terms in the original hybrid inflation model. In our model, inflation can be classi
We consider the dynamics of power-law inflation with a nonminimally coupled scalar field $phi$. It is well known that multiple scalar fields with exponential potentials $V(phi)=V_0 {rm exp}(-sqrt{16pi/p m_{rm pl}^2} phi)$ lead to an inflationary solu
During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We do a fu
We present a detailed derivation of the recently suggested new type of hill-top inflation [arXiv:1509.07270] originating from the microcanonical density matrix initial conditions in cosmology driven by conformal field theory (CFT). The cosmological i
We investigate preheating in a higher-dimensional generalized Kaluza-Klein theory with a quadratic inflaton potential $V(phi)=frac12 m^2phi^2$ including metric perturbations explicitly. The system we consider is the multi-field model where there exis