ترغب بنشر مسار تعليمي؟ اضغط هنا

Preheating with non-minimally coupled scalar fields in higher-curvature inflation models

108   0   0.0 ( 0 )
 نشر من قبل Shinji Tsujikawa
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In higher-curvature inflation models ($R+alpha_n R^n$), we study a parametric preheating of a scalar field $chi$ coupled non-minimally to a spacetime curvature $R$ ($xi R chi^2$). In the case of $R^2$-inflation model, efficient preheating becomes possible for rather small values of $xi$, i.e. $|xi|< several. Although the maximal fluctuation $sqrt{< chi^2 >}_{max} approx 2 times10^{17}$ GeV for $xi approx -4$ is almost the same as the chaotic inflation model with a non-minimally coupled $chi$ field, the growth rate of the fluctuation becomes much larger and efficient preheating is realized. We also investigate preheating for $R^4$ model and find that the maximal fluctuation is $sqrt{< chi^2 >}_{max} approx 8 times 10^{16}$ GeV for $xi approx -35$.

قيم البحث

اقرأ أيضاً

We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains $phi^4$ term as well as terms in the original hybrid inflation model. In our model, inflation can be classi fied into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum dominated region becomes either the type (I) or (II), resulting in blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while it around the local minimum must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.
231 - S. Tsujikawa 2000
We consider the dynamics of power-law inflation with a nonminimally coupled scalar field $phi$. It is well known that multiple scalar fields with exponential potentials $V(phi)=V_0 {rm exp}(-sqrt{16pi/p m_{rm pl}^2} phi)$ lead to an inflationary solu tion even if the each scalar field is not capable to sustain inflation. In this paper, we show that inflation can be assisted even in the one-field case by the effect of nonminimal coupling. When $xi$ is positive, since an effective potential which arises by a conformal transformation becomes flatter compared with the case of $xi=0$ for $phi>0$, we have an inflationary solution even when the universe evolves as non-inflationary in the minimally coupled case. For the negative $xi$, the assisted inflation can take place when $phi$ evolves in the region of $phi<0$ .
During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We do a fu ll analysis of preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long stage of decay of the inflaton field into other particles, which can be described by the perturbative approach to reheating after inflation. The resulting reheating temperature typically is rather low.
We present a detailed derivation of the recently suggested new type of hill-top inflation [arXiv:1509.07270] originating from the microcanonical density matrix initial conditions in cosmology driven by conformal field theory (CFT). The cosmological i nstantons of topology $S^1times S^3$, which set up these initial conditions, have the shape of a garland with multiple periodic oscillations of the scale factor of the spatial $S^3$-section. They describe underbarrier oscillations of the inflaton and scale factor in the vicinity of the inflaton potential maximum, which gives a sufficient amount of inflation required by the known CMB data. We build the approximation of two coupled harmonic oscillators for these garland instantons and show that they can generate inflation consistent with the parameters of the CMB primordial power spectrum in the non-minimal Higgs inflation model and in $R^2$ gravity. In particular, the instanton solutions provide smallness of inflationary slow-roll parameters $epsilon$ and $eta<0$ and their relation $epsilonsimeta^2$ characteristic of these two models. We present the mechanism of formation of hill-like inflaton potentials, which is based on logarithmic loop corrections to the asymptotically shift-invariant tree level potentials of these models in the Einstein frame. We also discuss the role of $R^2$-gravity as an indispensable finite renormalization tool in the CFT driven cosmology, which guarantees the non-dynamical (ghost free) nature of its scale factor and special properties of its cosmological garland type instantons. Finally, as a solution to the problem of hierarchy between the Planckian scale and the inflation scale we discuss the concept of a hidden sector of conformal higher spin fields.
362 - S. Tsujikawa 2000
We investigate preheating in a higher-dimensional generalized Kaluza-Klein theory with a quadratic inflaton potential $V(phi)=frac12 m^2phi^2$ including metric perturbations explicitly. The system we consider is the multi-field model where there exis ts a dilaton field $sigma$ which corresponds to the scale of compactifications and another scalar field $chi$ coupled to inflaton with the interaction $frac12 g^2phi^2chi^2+tilde{g}^2phi^3chi$. In the case of $tilde{g}=0$, we find that the perturbation of dilaton does not undergo parametric amplification while the $chi$ field fluctuation can be enhanced in the usual manner by parametric resonance. In the presence of the $tilde{g}^2phi^3chi$ coupling, the dilaton fluctuation in sub-Hubble scales is modestly amplified by the growth of metric perturbations for the large coupling $tilde{g}$. In super-Hubble scales, the enhancement of the dilaton fluctuation as well as metric perturbations is weak, taking into account the backreaction effect of created $chi$ particles. We argue that not only is it possible to predict the ordinary inflationary spectrum in large scales but extra dimensions can be held static during preheating in our scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا