ترغب بنشر مسار تعليمي؟ اضغط هنا

Preheating in New Inflation

121   0   0.0 ( 0 )
 نشر من قبل Jan Kratochvil
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We do a full analysis of preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long stage of decay of the inflaton field into other particles, which can be described by the perturbative approach to reheating after inflation. The resulting reheating temperature typically is rather low.



قيم البحث

اقرأ أيضاً

276 - S. Tsujikawa 2000
Metric perturbations typically strengthen field resonances during preheating. In contrast we present a model in which the super-Hubble field resonances are completely {em suppressed} when metric perturbations are included. The model is the nonminimal Fakir-Unruh scenario which is exactly solvable in the long-wavelength limit when metric perturbations are included, but exhibits exponential growth of super-Hubble modes in their absence. This gravitationally enhanced integrability is exceptional, both for its rarity and for the power with which it illustrates the importance of including metric perturbations in consistent studies of preheating. We conjecture a no-go result - there exists no {em single-field} model with growth of cosmologically-relevant metric perturbations during preheating.
We study the preheating process in a model of DBI inflation with a DBI-type inflaton coupling to a canonical entropy field. At the end of inflation, the inflaton field oscillates around its vacuum which can arise from an infrared cutoff parameter on the warp factor and correspondingly the evolution of its fluctuations can be approximately described by a generalized Hills equation in third order. We study the field fluctuations numerically and show that they could grow exponentially since the instability bands commonly exist in the DBI models if the amplitudes of background oscillations are of order or larger than the cutoff parameter. Our numerical result also reveals that the particle excitation of the matter field is more dramatic than that in usual case since the parametric resonance lasts longer when the effect of a warp factor is taken into account. Therefore, we conclude that the preheating process in the model of DBI inflation could be more efficient than that in standard inflation models.
107 - S. Tsujikawa , K. Maeda 1999
In higher-curvature inflation models ($R+alpha_n R^n$), we study a parametric preheating of a scalar field $chi$ coupled non-minimally to a spacetime curvature $R$ ($xi R chi^2$). In the case of $R^2$-inflation model, efficient preheating becomes pos sible for rather small values of $xi$, i.e. $|xi|< several. Although the maximal fluctuation $sqrt{< chi^2 >}_{max} approx 2 times10^{17}$ GeV for $xi approx -4$ is almost the same as the chaotic inflation model with a non-minimally coupled $chi$ field, the growth rate of the fluctuation becomes much larger and efficient preheating is realized. We also investigate preheating for $R^4$ model and find that the maximal fluctuation is $sqrt{< chi^2 >}_{max} approx 8 times 10^{16}$ GeV for $xi approx -35$.
189 - Bruce A. Bassett 1998
General relativistic effects in the form of metric perturbations are usually neglected in the preheating era that follows inflation. We argue that in realistic multi-field models these effects are in fact crucial, and the fully coupled system of metr ic and quantum field fluctuations needs to be considered. Metric perturbations are resonantly amplified, breaking the scale-invariance of the primordial spectrum, and in turn stimulate scalar field resonances via gravitational rescattering. This non-gravitationally dominated nonlinear growth of gravitational fluctuations may have significant effects on the Doppler peaks in the cosmic background radiation, primordial black hole formation, gravitational waves and nonthermal symmetry restoration.
255 - Bruce A. Bassett 1999
Can super-Hubble metric perturbations be amplified exponentially during preheating ? Yes. An analytical existence proof is provided by exploiting the conformal properties of massless inflationary models. The traditional conserved quantity zeta is non -conserved in many regions of parameter space. We include backreaction through the homogeneous parts of the inflaton and preheating fields and discuss the role of initial conditions on the post-preheating power-spectrum. Maximum field variances are strongly underestimated if metric perturbations are ignored. We illustrate this in the case of strong self-interaction of the decay products. Without metric perturbations, preheating in this case is very inefficient. However, metric perturbations increase the maximum field variances and give alternative channels for the resonance to proceed. This implies that metric perturbations can have a large impact on calculations of relic abundances of particles produced during preheating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا