ﻻ يوجد ملخص باللغة العربية
We investigate preheating in a higher-dimensional generalized Kaluza-Klein theory with a quadratic inflaton potential $V(phi)=frac12 m^2phi^2$ including metric perturbations explicitly. The system we consider is the multi-field model where there exists a dilaton field $sigma$ which corresponds to the scale of compactifications and another scalar field $chi$ coupled to inflaton with the interaction $frac12 g^2phi^2chi^2+tilde{g}^2phi^3chi$. In the case of $tilde{g}=0$, we find that the perturbation of dilaton does not undergo parametric amplification while the $chi$ field fluctuation can be enhanced in the usual manner by parametric resonance. In the presence of the $tilde{g}^2phi^3chi$ coupling, the dilaton fluctuation in sub-Hubble scales is modestly amplified by the growth of metric perturbations for the large coupling $tilde{g}$. In super-Hubble scales, the enhancement of the dilaton fluctuation as well as metric perturbations is weak, taking into account the backreaction effect of created $chi$ particles. We argue that not only is it possible to predict the ordinary inflationary spectrum in large scales but extra dimensions can be held static during preheating in our scenario.
Can super-Hubble metric perturbations be amplified exponentially during preheating ? Yes. An analytical existence proof is provided by exploiting the conformal properties of massless inflationary models. The traditional conserved quantity zeta is non
We study thermal equilibration after preheating in inflationary cosmology, which is an important step towards a comprehensive understanding of cosmic thermal history. By noticing that the problem is parallel to thermalization after a relativistic hea
Fermion creation during preheating in the presence of multiple scalar fields exhibits a range of interesting behaviour relevant to estimating post-inflation gravitino abundances. We present non-perturbative analysis of this phenomenon over a 6-dimens
General relativistic effects in the form of metric perturbations are usually neglected in the preheating era that follows inflation. We argue that in realistic multi-field models these effects are in fact crucial, and the fully coupled system of metr
Metric perturbations typically strengthen field resonances during preheating. In contrast we present a model in which the super-Hubble field resonances are completely {em suppressed} when metric perturbations are included. The model is the nonminimal