ﻻ يوجد ملخص باللغة العربية
In this letter we report the direct perturbative QCD evaluation of twist-4 effects in diffractive DIS. They are large and have a strong impact on the $Q^2$ dependence of diffractive structure functions at large $beta$. Based on the AGK rules, we comment on the possible contribution from diffractive higher twists to $propto {1 over Q^{2}}$ corrections to proton structure function at small $x$. These corrections to the longitudinal structure function $F_{L}$ may be particularly large.
We study a twist decomposition of diffractive structure functions in the diffractive deep inelastic scattering (DDIS) at HERA. At low Q2 and at large energy the data exhibit a strong excess, up to about 100%, above the twist 2 NLO DGLAP description.
Within the framework of a (1+1)--dimensional model which mimics high energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic $gamma^*h$ scattering cross sections. We analyze the cases of both fixed and run
Parity-violating deep inelastic scattering (PVDIS) has been proposed as an important new tool to extract the flavor and isospin dependence of parton distributions in the nucleon. We discuss finite-Q^2 effects in PVDIS asymmetries arising from sublead
A new method of extracting diffractive parton distributions is presented which avoids the use of Regge theory ansatz and is in much closer relation with the factorisation theorem for diffractive hard processes.
We summarize the experimental and theoretical results presented in the Physics at the Highest Q^2 and p^2_t working group at the DIS 2000 Workshop. High Q^2 and p^2_t processes measured at current and future colliders allow to improve our knowledge o