ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Deca-TeV Unified Compositeness at the 4 TeV mu+mu- Collider

54   0   0.0 ( 0 )
 نشر من قبل Yury F. Pirogov
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework of the unified compositeness of leptons, quarks and Higgs bosons, the hidden local symmetry hat H_{loc}= SU(2)_Ltimes U(1)_Y with the heavy composite vector bosons, in addition to the SM gauge bosons, is briefly described. Supplementary hypothesis of the vector boson dominance (VBD) of the SM gauge interactions is considered. It is argued that this should produce the universal dominant residual interactions of the SM composite particles, i.e., all of the fermions and Higgs bosons. Restrictions on the universal residual fermion-fermion, fermion-boson and boson-boson interactions due to the VBD are investigated. Manifestations of the residual interactions at the 4 TeV mu+mu- collider are studied. It is shown that at 95% C.L. the unified substructure could be investigated at the collider in the processes mu+mu- to bar ff up to the compositeness scale O(150 TeV), in the processes mu+mu- to ZH, W+W- up to O(100 TeV) and in the process mu+mu- to ZHH up to O(40 TeV), which lie in the naturally preferable Deca-TeV region.

قيم البحث

اقرأ أيضاً

Muon acceleration from 30 to 750 GeV in 72 orbits using two rings in the 1000m radius Tevatron tunnel is explored. The first ring ramps at 400 Hz and accelerates muons from 30 to 400 GeV in 28 orbits using 14 GV of 1.3 GHz superconducting RF. The rin g duplicates the Fermilab 400 GeV main ring FODO lattice, which had a 61m cell length. Muon survival is 80%. The second ring accelerates muons from 400 to 750 GeV in 44 orbits using 8 GV of 1.3 GHz superconducting RF. The 30 T/m main ring quadrupoles are lengthened 87% to 3.3m. The four main ring dipoles in each half cell are replaced by three dipoles which ramp at 550 Hz from -1.8T to +1.8T interleaved with two 8T fixed superconducting dipoles. The ramping and superconducting dipoles oppose each other at 400 GeV and act in unison at 750 GeV. Muon survival is 92%. Two mm copper wire, 0.28mm grain oriented silicon steel laminations, and a low duty cycle mitigate eddy current losses. Low emittance muon bunches allow small aperatures and permit magnets to ramp with a few thousand volts. Little civil construction is required. The tunnel exists.
We make a frequentist analysis of the parameter space of the CMSSM and NUHM1, using a Markov Chain Monte Carlo (MCMC) with 95 (221) million points to sample the CMSSM (NUHM1) parameter spaces. Our analysis includes the ATLAS search for supersymmetric jets + MET signals using ~ 5/fb of LHC data at 7 TeV, which we apply using PYTHIA and a Delphes implementation that we validate in the relevant parameter regions of the CMSSM and NUHM1. Our analysis also includes the constraint imposed by searches for B_s to mu+mu- by LHCb, CMS, ATLAS and CDF, and the limit on spin-independent dark matter scattering from 225 live days of XENON100 data. We assume M_h ~ 125 GeV, and use a full set of electroweak precision and other flavour-physics observables, as well as the cold dark matter density constraint. The ATLAS 5/fb constraint has relatively limited effects on the 68 and 95% CL regions in the (m_0, m_1/2) planes of the CMSSM and NUHM1. The new B_s to mu+mu- constraint has greater impacts on these CL regions, and also impacts significantly the 68 and 95% CL regions in the (M_A, tan beta) planes of both models, reducing the best-fit values of tan beta. The recent XENON100 data eliminate the focus-point region in the CMSSM and affect the 68 and 95% CL regions in the NUHM1. In combination, these new constraints reduce the best-fit values of m_0, m_1/2 in the CMSSM, and increase the global chi^2 from 31.0 to 32.8, reducing the p-value from 12% to 8.5%. In the case of the NUHM1, they have little effect on the best-fit values of m_0, m_1/2, but increase the global chi^2 from 28.9 to 31.3, thereby reducing the p-value from 15% to 9.1%.
This report summarizes a study of the physics potential of the CLIC e+e- linear collider operating at centre-of-mass energies from 1 TeV to 5 TeV with luminosity of the order of 10^35 cm^-2 s^-1. First, the CLIC collider complex is surveyed, with emp hasis on aspects related to its physics capabilities, particularly the luminosity and energy, and also possible polarization, gammagamma and e-e- collisions. The next CLIC Test facility, CTF3, and its R&D programme are also reviewed. We then discuss aspects of experimentation at CLIC, including backgrounds and experimental conditions, and present a conceptual detector design used in the physics analyses, most of which use the nominal CLIC centre-of-mass energy of 3 TeV. CLIC contributions to Higgs physics could include completing the profile of a light Higgs boson by measuring rare decays and reconstructing the Higgs potential, or discovering one or more heavy Higgs bosons, or probing CP violation in the Higgs sector. Turning to physics beyond the Standard Model, CLIC might be able to complete the supersymmetric spectrum and make more precise measurements of sparticles detected previously at the LHC or a lower-energy linear e+e- collider: gammagamma collisions and polarization would be particularly useful for these tasks. CLIC would also have unique capabilities for probing other possible extensions of the Standard Model, such as theories with extra dimensions or new vector resonances, new contact interactions and models with strong WW scattering at high energies. In all the scenarios we have studied, CLIC would provide significant fundamental physics information beyond that available from the LHC and a lower-energy linear e+e- collider, as a result of its unique combination of high energy and experimental precision.
240 - M. Woods 1998
An electron beam polarization of 80% or greater will be a key feature of a 1 TeV Linear Collider. Accurate measurements of the beam polarization will therefore be needed. We discuss design considerations and capabilities for a Compton-scattering pola rimeter located in the extraction line from the Interaction Point. Polarization measurements with 1% accuracy taken parasitic to collision data look feasible, but detailed simulations are needed. Polarimeter design issues are similar for both electron-positron and electron-electron collider modes, though beam disruption creates more difficulties for the electron-electron mode.
Neutron stars are efficient accelerators for bringing charges up to relativistic energies. We show that if positive ions are accelerated to ~1 PeV near the surface of a young neutron star (t_age < about 10^5 yr), protons interacting with the stars ra diation field will produce beamed mu neutrinos with energies of ~50 TeV that could produce the brightest neutrino sources at these energies yet proposed. These neutrinos would be coincident with the radio beam, so that if the star is detected as a radio pulsar, the neutrino beam will sweep the Earth; the star would be a ``neutrino pulsar. Looking for muon neutrino emission from young neutron stars will provide a valuable probe of the energetics of the neutron star magnetosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا