ترغب بنشر مسار تعليمي؟ اضغط هنا

TeV mu Neutrinos from Young Neutron Stars

49   0   0.0 ( 0 )
 نشر من قبل Bennett Link
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron stars are efficient accelerators for bringing charges up to relativistic energies. We show that if positive ions are accelerated to ~1 PeV near the surface of a young neutron star (t_age < about 10^5 yr), protons interacting with the stars radiation field will produce beamed mu neutrinos with energies of ~50 TeV that could produce the brightest neutrino sources at these energies yet proposed. These neutrinos would be coincident with the radio beam, so that if the star is detected as a radio pulsar, the neutrino beam will sweep the Earth; the star would be a ``neutrino pulsar. Looking for muon neutrino emission from young neutron stars will provide a valuable probe of the energetics of the neutron star magnetosphere.

قيم البحث

اقرأ أيضاً

169 - K. Asakura , A. Gando , Y. Gando 2015
In the late stages of nuclear burning for massive stars ($M>8~M_{sun}$), the production of neutrino-antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increa ses and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of $25~M_{sun}$ at a distance less than 690~pc with 3$sigma$ significance before the supernova. This limit is dependent on the neutrino mass ordering and background levels. KamLAND takes data continuously and can provide a supernova alert to the community.
78 - S.B. Popov 2003
The origin of the local population of young, cooling neutron stars is investigated with a population synthesis model taking into account the contribution of neutron stars born in the Gould Belt, in addition to those originating in the Galactic disk. We estimate their emission in the soft X-ray band as a function of distance and age and construct the Log N -- Log S distribution. It is shown that the inclusion of neutron stars from the Gould Belt provides a good fit to the observed Log N -- Log S distribution. As the Sun is situated inside the Gould Belt, one can naturally explain the comparative local overabundance of massive progenitors and can remove the difficulty of the deficit of relatively bright ($ga 0.1$ ROSAT PSPC cts s$^{-1}$) cooling neutron stars previously reported from models where only neutron stars from the Galactic disk were accounted for.
400 - P. Meszaros 2001
Core collapse of massive stars resulting in a relativistic fireball jet which breaks through the stellar envelope is a widely discussed scenario for gamma-ray burst production. For very extended or slow rotating stars, the fireball may be unable to b reak through the envelope. Both penetrating and choked jets will produce, by photo-meson interactions of accelerated protons, a burst of neutrinos with energies in excess of 5 TeV while propagating in the envelope. The predicted flux, from both penetrating and chocked fireballs, should be easily detectable by planned cubic kilometer neutrino telescopes.
Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.
A diffuse flux of astrophysical neutrinos above $100,mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35,mathrm{TeV}$ and analyze its flavor composition by class ifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{mu}:f_tau)_oplusapprox(1:1:1)_oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of $(0:1:0)_oplus$ is excluded at $3.3sigma$, and a purely shower-like composition of $(1:0:0)_oplus$ is excluded at $2.3sigma$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا