ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaotic inflation with running nonminimal coupling

59   0   0.0 ( 0 )
 نشر من قبل Masahiro Tanaka
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have found a successful model of chaotic inflation with an inflaton coupled nonminimally with gravity. The nonminimal coupling constant $xi$ runs with the evolution of the inflaton. The running nature of the coupling leads naturally to the situations where the coupling becomes small enough to have sufficient period of the inflation to resolve the cosmological puzzles.

قيم البحث

اقرأ أيضاً

163 - Benjamin Shlaer 2012
We illustrate a framework for constructing models of chaotic inflation where the inflaton is the position of a D3 brane along the universal cover of a string compactification. In our scenario, a brane rolls many times around a non-trivial one-cycle, thereby unwinding a Ramond-Ramond flux. These flux monodromies are similar in spirit to the monodromies of Silverstein, Westphal, and McAllister, and their four-dimensional description is that of Kaloper and Sorbo. Assuming moduli stabilization is rigid enough, the large-field inflationary potential is protected from radiative corrections by a discrete shift symmetry.
We study the multifield dynamics of axion models nonminimally coupled to gravity. As usual, we consider a canonical $U(1)$ symmetry-breaking model in which the axion is the phase of a complex scalar field. If the complex scalar field has a nonminimal coupling to gravity, then the (oft-forgotten) radial component can drive a phase of inflation prior to an inflationary phase driven by the axion field. In this setup, the mass of the axion field is dependent on the radial field because of the nonminimal coupling, and the axion remains extremely light during the phase of radial inflation. As the radial field approaches the minimum of its potential, there is a transition to natural inflation in the angular direction. In the language of multifield inflation, this system exhibits ultra-light isocurvature perturbations, which are converted to adiabatic perturbations at a fast turn, namely the onset of axion inflation. For models wherein the CMB pivot scale exited the horizon during radial inflation, this acts to suppresses the tensor-to-scalar ratio $r$, without generating CMB non-Gaussianity or observable isocurvature perturbations. Finally, we note that the interaction strength between axion and gauge fields is suppressed during the radial phase relative to its value during the axion inflation phase by several orders of magnitude. This decouples the constraints on the inflationary production of gauge fields (e.g., from primordial black holes) from the constraints on their production during (p)reheating.
Although natural inflation is a theoretically well-motivated model for cosmic inflation, it is in tension with recent Planck cosmic microwave background anisotropy measurements. We present a way to alleviate this tension by considering a very weak no nminimal coupling of the inflaton field to gravity in both contexts of metric and Palatini formulations of general relativity. We start our discussions with a generic form of the inflaton coupling to the Ricci scalar, then focus on a simple form to do phenomenological study. Our results show that such an extension can bring natural inflations predictions to a good agreement with the Planck data. Depending on values of the coupling constant $xi$ and the symmetry breaking scale $f$, we find that with $|xi|sim 10^{-3}$ and $fgtrsim 2.0 M_{mathrm{pl}}$ predictions of the model stay inside $68%$ CL allowed region until $f$ increases up to $7.7 M_{mathrm{pl}}$, then only inside $95%$ CL region after $f$ exceeds the latter value. The predictions from the metric and the Palatini theories are very similar due to the simple form of the coupling function we use and the small magnitude of the coupling $xi$. Successful reheating can also be realized in this model.
In previous works we have derived a Running Vacuum Model (RVM) for a string Universe, which provides an effective description of the evolution of 4-dimensional string-inspired cosmologies from inflation till the present epoch. In the context of this stringy RVM version, it is assumed that the early Universe is characterised by purely gravitational degrees of freedom, from the massless gravitational string multiplet, including the antisymmetric tensor field. The latter plays an important role, since its dual gives rise to a `stiff gravitational-axion matter, which in turn couples to the gravitational anomaly terms, assumed to be non-trivial at early epochs. In the presence of primordial gravitational wave (GW) perturbations, such anomalous couplings lead to an RVM-like dynamical inflation, without external inflatons. We review here this framework and discuss potential scenarios for the generation of such primordial GW, among which the formation of unstable domain walls, which eventually collapse in a non-spherical-symmetric manner, giving rise to GW. We also remark that the same type of stiff axionic matter could provide, upon the generation of appropriate potentials during the post-inflationary eras, (part of) the Dark Matter (DM) in the Universe, which could well be ultralight, depending on the parameters of the string-inspired model. All in all, the new (stringy) mechanism for RVM-inflation preserves the basic structure of the original (and more phenomenological) RVM, as well as its main advantages: namely, a mechanism for graceful exit and for generating a huge amount of entropy capable of explaining the horizon problem. It also predicts axionic DM and the existence of mild dynamical Dark Energy (DE) of quintessence type in the present universe, both being living fossils of the inflationary stages of the cosmic evolution.
We study the post-inflation dynamics of multifield models involving nonminimal couplings using lattice simulations to capture significant nonlinear effects like backreaction and rescattering. We measure the effective equation of state and typical tim e-scales for the onset of thermalization, which could affect the usual mapping between predictions for primordial perturbation spectra and measurements of anisotropies in the cosmic microwave background radiation. For large values of the nonminimal coupling constants, we find efficient particle production that gives rise to nearly instantaneous preheating. Moreover, the strong single-field attractor behavior that was previously identified persists until the end of preheating, thereby suppressing typical signatures of multifield models. We therefore find that predictions for primordial observables in this class of models retain a close match to the latest observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا