ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Dynamics of Preheating after Multifield Inflation with Nonminimal Couplings

79   0   0.0 ( 0 )
 نشر من قبل David Kaiser
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the post-inflation dynamics of multifield models involving nonminimal couplings using lattice simulations to capture significant nonlinear effects like backreaction and rescattering. We measure the effective equation of state and typical time-scales for the onset of thermalization, which could affect the usual mapping between predictions for primordial perturbation spectra and measurements of anisotropies in the cosmic microwave background radiation. For large values of the nonminimal coupling constants, we find efficient particle production that gives rise to nearly instantaneous preheating. Moreover, the strong single-field attractor behavior that was previously identified persists until the end of preheating, thereby suppressing typical signatures of multifield models. We therefore find that predictions for primordial observables in this class of models retain a close match to the latest observations.



قيم البحث

اقرأ أيضاً

This is the second in a series of papers on preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the rigid-spacetime approximation and consider field trajectories within the single-field attractor, which is a generic feature of these models. We construct the Floquet charts to find regions of parameter space in which particle production is efficient for both the adiabatic and isocurvature modes, and analyze the resonance structure using analytic and semi-analytic techniques. Particle production in the adiabatic direction is characterized by the existence of an asymptotic scaling solution at large values of the nonminimal couplings, $xi_I gg 1$, in which the dominant instability band arises in the long-wavelength limit, for comoving wavenumbers $k rightarrow 0$. However, the large-$xi_I$ regime is not reached until $xi_I geq {cal O} (100)$. In the intermediate regime, with $xi_I sim {cal O}(1 - 10)$, the resonance structure depends strongly on wavenumber and couplings. The resonance structure for isocurvature perturbations is distinct and more complicated than its adiabatic counterpart. An intermediate regime, for $xi_I sim {cal O} (1 - 10)$, is again evident. For large values of $xi_I$, the Floquet chart consists of densely spaced, nearly parallel instability bands, suggesting a very efficient preheating behavior. The increased efficiency arises from features of the nontrivial field-space manifold in the Einstein frame, which itself arises from the fields nonminimal couplings in the Jordan frame, and has no analogue in models with minimal couplings. Quantitatively, the approach to the large-$xi_I$ asymptotic solution for isocurvature modes is slower than in the case of the adiabatic modes.
We have conducted extensive lattice simulations to study the post-inflation dynamics of multifield models involving nonminimal couplings. We explore the parameter dependence of preheating in these models and describe the various time-scales that cont rol such nonlinear processes as energy transfer, re-scattering, and the approach to radiation-domination and thermalization. In the limit of large nonminimal couplings ($xi_I sim 100$), we find that efficient transfer of energy from the inflaton condensate to radiative degrees of freedom, emergence of a radiation-dominated equation of state, and the onset of thermalization each consistently occur within $N_{rm reh} lesssim 3$ $e$-folds after the end of inflation, largely independent of the values of the other couplings in the models. The exception is the case of negative ellipticity, in which there is a misalignment between the dominant direction in field-space along which the system evolves and the larger of the nonminimal couplings $xi_I$. In those cases, the field-space-driven parametric resonance is effectively shut off. More generally, the competition between the scalar fields potential and the field-space manifold structure can yield interesting phenomena such as two-stage resonances. Despite the explosive particle production, which can lead to a quick depletion of the background energy density, the nonlinear processes do not induce any super-horizon correlations after the end of inflation in these models, which keeps predictions for CMB observables unaffected by the late-time amplification of isocurvature fluctuations. Hence the excellent agreement between primordial observables and recent observations is preserved for this class of models, even when we consider post-inflation dynamics.
This paper concludes our semi-analytic study of preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. Using the covariant framework of paper I in this series, we extend the rigid-spacetime results of p aper II by considering both the expansion of the universe during preheating, as well as the effect of the coupled metric perturbations on particle production. The adiabatic and isocurvature perturbations are governed by different effective masses that scale differently with the nonminimal couplings and evolve differently in time. The effective mass for the adiabatic modes is dominated by contributions from the coupled metric perturbations immediately after inflation. The metric perturbations contribute an oscillating tachyonic term that enhances an early period of significant particle production for the adiabatic modes, which ceases on a time-scale governed by the nonminimal couplings $xi_I$. The effective mass of the isocurvature perturbations, on the other hand, is dominated by contributions from the fields potential and from the curvature of the field-space manifold (in the Einstein frame), the balance between which shifts on a time-scale governed by $xi_I$. As in papers I and II, we identify distinct behavior depending on whether the nonminimal couplings are small ($xi_I lesssim {cal O} (1)$), intermediate ($xi_I sim {cal O} (1 - 10)$), or large ($xi_I geq 100$).
This is the first of a three-part series of papers, in which we study the preheating phase for multifield models of inflation involving nonminimal couplings. In this paper, we study the single-field attractor behavior that these models exhibit during inflation and quantify its strength and parameter dependence. We further demonstrate that the strong single-field attractor behavior persists after the end of inflation. Preheating in such models therefore generically avoids the de-phasing that typically affects multifield models with minimally coupled fields, allowing efficient transfer of energy from the oscillating inflaton condensate(s) to coupled perturbations across large portions of parameter space. We develop a doubly-covariant formalism for studying the preheating phase in such models and identify several features specific to multifield models with nonminimal couplings, including effects that arise from the nontrivial field-space manifold. In papers II and III, we apply this formalism to study how the amplification of adiabatic and isocurvature perturbations varies with parameters, highlighting several distinct regimes depending on the magnitude of the nonminimal couplings $xi_I$.
We study the multifield dynamics of axion models nonminimally coupled to gravity. As usual, we consider a canonical $U(1)$ symmetry-breaking model in which the axion is the phase of a complex scalar field. If the complex scalar field has a nonminimal coupling to gravity, then the (oft-forgotten) radial component can drive a phase of inflation prior to an inflationary phase driven by the axion field. In this setup, the mass of the axion field is dependent on the radial field because of the nonminimal coupling, and the axion remains extremely light during the phase of radial inflation. As the radial field approaches the minimum of its potential, there is a transition to natural inflation in the angular direction. In the language of multifield inflation, this system exhibits ultra-light isocurvature perturbations, which are converted to adiabatic perturbations at a fast turn, namely the onset of axion inflation. For models wherein the CMB pivot scale exited the horizon during radial inflation, this acts to suppresses the tensor-to-scalar ratio $r$, without generating CMB non-Gaussianity or observable isocurvature perturbations. Finally, we note that the interaction strength between axion and gauge fields is suppressed during the radial phase relative to its value during the axion inflation phase by several orders of magnitude. This decouples the constraints on the inflationary production of gauge fields (e.g., from primordial black holes) from the constraints on their production during (p)reheating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا