ﻻ يوجد ملخص باللغة العربية
Although natural inflation is a theoretically well-motivated model for cosmic inflation, it is in tension with recent Planck cosmic microwave background anisotropy measurements. We present a way to alleviate this tension by considering a very weak nonminimal coupling of the inflaton field to gravity in both contexts of metric and Palatini formulations of general relativity. We start our discussions with a generic form of the inflaton coupling to the Ricci scalar, then focus on a simple form to do phenomenological study. Our results show that such an extension can bring natural inflations predictions to a good agreement with the Planck data. Depending on values of the coupling constant $xi$ and the symmetry breaking scale $f$, we find that with $|xi|sim 10^{-3}$ and $fgtrsim 2.0 M_{mathrm{pl}}$ predictions of the model stay inside $68%$ CL allowed region until $f$ increases up to $7.7 M_{mathrm{pl}}$, then only inside $95%$ CL region after $f$ exceeds the latter value. The predictions from the metric and the Palatini theories are very similar due to the simple form of the coupling function we use and the small magnitude of the coupling $xi$. Successful reheating can also be realized in this model.
We have found a successful model of chaotic inflation with an inflaton coupled nonminimally with gravity. The nonminimal coupling constant $xi$ runs with the evolution of the inflaton. The running nature of the coupling leads naturally to the situati
We show that gravitational theories with a nonminimal coupling (NMC) to the matter fields lead to a violation of Etheringtons distance-duality relation, which relates the luminosity and angular diameter distances. We derive constraints on power-law a
We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different c
This is the second in a series of papers on preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. In this paper, we work in the rigid-spacetime approximation and consider field trajectories within the
We consider a subclass of Horndeski theories for studying cosmic inflation. In particular, we investigate models of inflation in which the derivative self-interaction of the scalar field and the non-minimal derivative coupling to gravity are present