ترغب بنشر مسار تعليمي؟ اضغط هنا

Kaon-Nucleus Drell-Yan Processes and Kaon Structure Functions

115   0   0.0 ( 0 )
 نشر من قبل Tim Londergan
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English
 تأليف J.T. Londergan




اسأل ChatGPT حول البحث

We investigate the information which could be obtained from Drell-Yan processes with sufficiently intense beams of charged kaons on isoscalar targets. It is found that combinations of $K^+$ and $K^-$ Drell-Yan measurements on isoscalar nuclear targets would allow one to extract the kaon sea quark distributions. These cross sections are also sensitive to the strange valence quark distribution in the kaon, although one would need a significant increase over the presently available kaon fluxes in order to extract this quantity with sufficient accuracy.



قيم البحث

اقرأ أيضاً

We present the Monte Carlo event generator WINHAC for Drell-Yan processes in proton-proton, proton-antiproton, proton-ion and ion-ion collisions. It features multiphoton radiation within the Yennie-Frautschi-Suura exclusive exponentiation scheme with O(alpha) electroweak corrections for the charged-current (W+/W-) processes and multiphoton radiation generated by PHOTOS for neutral-current (Z+gamma) ones. For the initial-state QCD/QED parton shower and hadronisation it is interfaced with PYTHIA. It includes several options, e.g. for the polarized W-boson production, generation of weighted/unweighted events, etc. WINHAC was cross-checked numerically at the per-mille level with independent Monte Carlo programs, such as HORACE and SANC. It has been used as a basic tool for developing and testing some new methods of precise measurements of the Standard Model parameters at the LHC, in particular the W-boson mass. Recently, it has been applied to simulations of double Drell-Yan processes resulting from double-parton scattering, in order to assess their influence on the Higgs-boson detection at the LHC in its ZZ and W+W- decay channels.
The forward Drell--Yan process in $pp$ scattering at the LHC at $sqrt{S}=14$ TeV is considered. We analyze the Drell--Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the s mall $x$ gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell--Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat--W{u}sthoff model and the dipole cross section obtained from the Balitsky--Fadin--Kuraev--Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell--Yan structure functions for all Drell--Yan pair masses $M$, and the higher twist effects become important for $M lesssim 10$ GeV. It is found that the structure function $W_{TT}$ related to the $A_2$ angular coefficient and the Lam--Tung observable $A_0 -A_2$ are particularly sensitive to the gluon $k_T$ effects and to the higher twist effects. A procedure is suggested how to disentangle the higher twist effects from the gluon transverse momentum effects.
The Sivers distributions recently extracted from semi-inclusive deep inelastic scattering data [1] are used to compute estimates for Sivers asymmetries in Drell-Yan processes which are being planned at several facilities (RHIC, COMPASS, J-PARC, PAX, PANDA, NICA (JINR) and SPASCHARM (IHEP)). Most of these asymmetries turn out to be large and could allow a clear test of the predicted sign change of the Sivers distributions when active in SIDIS and Drell-Yan processes. This is regarded as a fundamental test of our understanding, within QCD and the factorization scheme, of single spin asymmetries.
Effective nuclear densities probed by kaon- and anti-kaon-nucleus systems are studied theoretically both for bound and low energy scattering states. As for the anti-kaon bound states, we investigate kaonic atoms. We find that the effective density de pends on the atomic states significantly and we have the possibility to obtain the anti-kaon properties at various nuclear densities by observing the several kaonic atom states. We also find the energy dependence of the probed density by kaon and anti-kaon scattering states. We find that the study of the effective nuclear density will help to find the proper systems to investigate the meson properties at various nuclear densities.
The relevance of single-W and single-Z production processes at hadron colliders is well known: in the present paper the status of theoretical calculations of Drell-Yan processes is summarized and some results on the combination of electroweak and QCD corrections to a sample of observables of the process $p p to W^pm to mu^pm + X$ at the LHC are discussed. The phenomenological analysis shows that a high-precision knowledge of QCD and a careful combination of electroweak and strong contributions is mandatory in view of the anticipated LHC experimental accuracy. One of the authors (O.N.) dedicates these notes to Prof. S. Jadach, in honour of his 60th birthday and grateful for all that Prof. Jadach taught him during their fruitful collaboration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا