ﻻ يوجد ملخص باللغة العربية
We present the Monte Carlo event generator WINHAC for Drell-Yan processes in proton-proton, proton-antiproton, proton-ion and ion-ion collisions. It features multiphoton radiation within the Yennie-Frautschi-Suura exclusive exponentiation scheme with O(alpha) electroweak corrections for the charged-current (W+/W-) processes and multiphoton radiation generated by PHOTOS for neutral-current (Z+gamma) ones. For the initial-state QCD/QED parton shower and hadronisation it is interfaced with PYTHIA. It includes several options, e.g. for the polarized W-boson production, generation of weighted/unweighted events, etc. WINHAC was cross-checked numerically at the per-mille level with independent Monte Carlo programs, such as HORACE and SANC. It has been used as a basic tool for developing and testing some new methods of precise measurements of the Standard Model parameters at the LHC, in particular the W-boson mass. Recently, it has been applied to simulations of double Drell-Yan processes resulting from double-parton scattering, in order to assess their influence on the Higgs-boson detection at the LHC in its ZZ and W+W- decay channels.
The Sivers distributions recently extracted from semi-inclusive deep inelastic scattering data [1] are used to compute estimates for Sivers asymmetries in Drell-Yan processes which are being planned at several facilities (RHIC, COMPASS, J-PARC, PAX,
The relevance of single-W and single-Z production processes at hadron colliders is well known: in the present paper the status of theoretical calculations of Drell-Yan processes is summarized and some results on the combination of electroweak and QCD
Drell-Yan lepton pair production processes are extremely important for Standard Model (SM) precision tests and for beyond the SM searches at hadron colliders. Fast and accurate predictions are essential to enable the best use of the precision measure
We extract the pion transverse momentum dependent (TMD) parton distribution by fitting the pion-induced Drell-Yan process within the framework of TMD factorization. The analysis is done at the next-to-next-to-leading order (NNLO) with proton TMD dist
We present a detailed comparison of the fixed-order predictions computed by four publicly available computer codes for Drell-Yan processes at the LHC and Tevatron colliders. We point out that while there is agreement among the predictions at the next