ﻻ يوجد ملخص باللغة العربية
The forward Drell--Yan process in $pp$ scattering at the LHC at $sqrt{S}=14$ TeV is considered. We analyze the Drell--Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small $x$ gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell--Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat--W{u}sthoff model and the dipole cross section obtained from the Balitsky--Fadin--Kuraev--Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell--Yan structure functions for all Drell--Yan pair masses $M$, and the higher twist effects become important for $M lesssim 10$ GeV. It is found that the structure function $W_{TT}$ related to the $A_2$ angular coefficient and the Lam--Tung observable $A_0 -A_2$ are particularly sensitive to the gluon $k_T$ effects and to the higher twist effects. A procedure is suggested how to disentangle the higher twist effects from the gluon transverse momentum effects.
We investigate the information which could be obtained from Drell-Yan processes with sufficiently intense beams of charged kaons on isoscalar targets. It is found that combinations of $K^+$ and $K^-$ Drell-Yan measurements on isoscalar nuclear target
We study double spin asymmetries in Drell-Yan processes in which one initial hadron is transversely polarized and another one is longitudinally polarized. The complete part of the hadronic tensor relevant to asymmetries is derived. This part consists
We present an analysis of unpolarized Drell-Yan pair production in pion-nucleus scattering with a particular focus into the pion dynamics. The study consists in analyzing the effect of the partonic longitudinal and, especially, transverse distributio
We present the Monte Carlo event generator WINHAC for Drell-Yan processes in proton-proton, proton-antiproton, proton-ion and ion-ion collisions. It features multiphoton radiation within the Yennie-Frautschi-Suura exclusive exponentiation scheme with
Global analyses of Parton Distribution Functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions an