ترغب بنشر مسار تعليمي؟ اضغط هنا

A global analysis of inclusive diffractive cross sections at HERA

74   0   0.0 ( 0 )
 نشر من قبل Schoeffel Laurent
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the most recent data on the diffractive structure functions from the H1 and ZEUS Collaborations at HERA using four models. First, a Pomeron Structure Function (PSF) model, in which the Pomeron is considered as an object with parton distribution functions. Then, the Bartels Ellis Kowalski Wusthoff (BEKW) approach is discussed, assuming the simplest perturbative description of the Pomeron using a two-gluon ladder. A third approach, the Bialas Peschanski (BP) model, based on the dipole formalism is then described. Finally, we discuss the Golec-Biernat-Wusthoff (GBW) saturation model which takes into account saturation effects. The best description of all avaible measurements can be achieved with either the PSF based model or the BEKW approach. In particular, the BEKW prediction allows to include the highest $beta$ measurements, which are dominated by higher twists effects and provide an efficient and compact parametrisation of the diffractive cross section. The two other models also give a good description of cross section measurements at small $x$ with a small number of parameters. The comparison of all predictions allows us to identify interesting differences in the behaviour of the effective pomeron intercept and in the shape of the longitudinal component of the diffractive structure functions. In this last part, we present some features that can be discriminated by new experimental measurements, completing the HERA program.



قيم البحث

اقرأ أيضاً

Within the framework of a (1+1)--dimensional model which mimics high energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic $gamma^*h$ scattering cross sections. We analyze the cases of both fixed and run ning coupling within the mean field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, the suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed.
208 - Laurent Schoeffel 2013
A new experimental analysis of the diffractive process $ep rightarrow eXY$, where $Y$ denotes a proton or its low mass excitation with $M_Y<1.6$ GeV, has been performed with the H1 experiment at HERA cite{Aaron:2012ad}. The main results of this study are summarised in this document, together with the comparisons to other measurements and theoretical predictions.
185 - Zhiqing Zhang 2015
In this talk, I present the brand new results from the H1 and ZEUS Collaborations on the combination of all previously published inclusive deep inelastic cross sections at HERA for neutral and charged current $e^pm p$ scattering for zero beam polaris ation and the corresponding parton distributions functions, HERAPDF 2.0, at up to next-to-next-to-leading order (NNLO). The results also include a new precise determination at next-to-leading order (NLO) of the strong coupling constant $alpha_s(M^2_Z)=0.1184pm 0.0016$ (excluding scale uncertainties) based on a simultaneous fit to the combined inclusive cross section data and jet production data.
The zero-mass (ZM) parton formalism is widely used in high-energy physics because of its simplicity and historical importance, even while massive quarks (c,b,t) are playing an increasingly prominent role in particle phenomenology, including global QC D analyses of parton distributions based on the more precise general-mass (GM) QCD formalism. In view of this dichotomy, we show how the obvious inconsistencies of the conventional implementation of the ZM formalism can be corrected, while preserving the simplicity of its matrix elements. The resulting intermediate mass (IM) scheme for perturbative QCD calculation can be considered either as improved ZM formulation with realistic treatment of heavy-flavor kinematics; or as a simplified GM formulation with approximate ZM hard cross sections. Phenomenologically, global analyses based on IM calculations can effectively reproduce, within the present estimated uncertainty bands, the more correct GM results on parton distributions, as well as their predictions for a wide range of collider processes of current interest.
The experimental results of the future electron -- ion ($e A$) collider are expected to constrain the dynamics of the strong interactions at small values of the Bjorken -- $x$ variable and large nuclei. Recently it has been suggested that Coulomb cor rections can be important in inclusive and diffractive $eA$ interactions. In this paper we present a detailed investigation of the impact of the Coulomb corrections to some of the observables that will be measured in the future $eA$ collider. In particular, we estimate the magnitude of these corrections for the charm and longitudinal cross sections in inclusive and diffractive interactions. Our results demonstrate that the Coulomb corrections for these observables are negligible, which implies that they can be used to probe the QCD dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا