ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions

64   0   0.0 ( 0 )
 نشر من قبل Manuel Valverde
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of a Monte Carlo cascade method, to account for the rescattering of the outgoing nucleon, we study the charged and neutral current inclusive one nucleon knockout reactions off nuclei induced by neutrinos. The nucleon emission process studied here is a clear signal for neutral--current neutrino driven reactions, and can be used in the analysis of future neutrino experiments.



قيم البحث

اقرأ أيضاً

We study neutrino-induced charged-current (CC) $pi^0$ production on carbon nuclei using events with fully imaged final-state proton-$pi^0$ systems. Novel use of final-state correlations based on transverse kinematic imbalance enable the first measure ments of the struck nucleons Fermi motion, of the intranuclear momentum transfer (IMT) dynamics, and of the final-state hadronic momentum configuration in neutrino pion production. Event distributions are presented for i) the momenta of neutrino-struck neutrons below the Fermi surface, ii) the direction of missing transverse momentum characterizing the strength of IMT, and iii) proton-pion momentum imbalance with respect to the lepton scattering plane. The observed Fermi motion and IMT strength are compared to the previous MINERvA measurement of neutrino CC quasielastic-like production. The measured shapes and absolute rates of these distributions, as well as the cross-section asymmetries show tensions with predictions from current neutrino generator models.
In this article, we present the charged and neutral current coherent pion production in the neutrino-nucleus interaction in the resonance region using the formalism based on the partially conserved axial current (PCAC) theorem which relates the neutr ino-nucleus cross section to the pion-nucleus elastic cross section. The pion nucleus elastic cross section is calculated using the Glauber model approach. We calculate the integrated cross sections for neutrino-carbon, neutrino-iron and neutrino-oxygen scattering. The results of integrated cross-section calculations are compared with the measured data
Deuteron disintegration by charged-current neutrino (CC$ u$) scattering offers the possibility to determine the energy of the incident neutrino by measuring in coincidence two of the three resulting particles: a charged lepton (usually a muon) and tw o protons, where we show that this channel can be isolated from all other, for instance, from those with a pion in the final state. We discuss the kinematics of the process for several detection scenarios, both in terms of kinematic variables that are natural from a theoretical point of view and others that are better matched to experimental situations. The deuteron structure is obtained from a relativistic model (involving an approximation to the Bethe-Salpeter equation) as an extension of a previous, well-tested model used in deuteron electrodisintegration. We provide inclusive and coincidence (semi-inclusive) cross sections for a variety of kinematic conditions, using the plane-wave impulse approximation, introducing final-state hadronic exchange terms (plane-wave Born approximation) and final-state hadronic interactions (distorted-wave Born approximation).
We developed the quasi-particle random phase approximation (QRPA) for the neutrino scattering off even-even nuclei via neutral current (NC) and charged cur- rent (CC). The QRPA has been successfully applied for the beta and betabeta decay of relevant nuclei. To describe neutrino scattering, general multipole transitions by weak interactions with a finite momentum transfer are calculated for NC and CC reaction with detailed formalism. Since we consider neutron-proton (np) pairing as well as neutron-neutron (nn) and proton-proton (pp) pairing correlations, the nn + pp QRPA and np QRPA are combined in a framework, which enables to describe both NC and CC reactions in a consistent way. Numerical results for u-^{12}C, -^{56}Fe and -^{56}Ni reactions are shown to comply with other theoretical calculations and reproduce well available experimental data.
69 - Oleksandr Tomalak 2020
We study the scattering of neutrinos on polarized and unpolarized free nucleons, and also the polarization of recoil particles in these scatters. In contrast to electromagnetic processes, the parity-violating weak interaction gives rise to large spin asymmetries at leading order. Future polarization measurements could provide independent access to the proton axial structure and allow the first extraction of the pseudoscalar form factor from neutrino data without the conventional partially conserved axial current (PCAC) ansatz and assumptions about the pion-pole dominance. The pseudoscalar form factor can be accessed with precise measurements with muon (anti)neutrinos of a few hundreds $mathrm{MeV}$ of energy or with tau (anti)neutrinos. The axial form factor can be extracted from scattering measurements using accelerator neutrinos of all energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا