ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged and Neutral Current Pion Production in Neutrino-Nucleus Scattering

91   0   0.0 ( 0 )
 نشر من قبل Kapil Saraswat
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we present the charged and neutral current coherent pion production in the neutrino-nucleus interaction in the resonance region using the formalism based on the partially conserved axial current (PCAC) theorem which relates the neutrino-nucleus cross section to the pion-nucleus elastic cross section. The pion nucleus elastic cross section is calculated using the Glauber model approach. We calculate the integrated cross sections for neutrino-carbon, neutrino-iron and neutrino-oxygen scattering. The results of integrated cross-section calculations are compared with the measured data

قيم البحث

اقرأ أيضاً

The treatment of nuclear effects in neutrino-nucleus interactions is one of the main sources of systematic uncertainty for the analysis and interpretation of data of neutrino oscillation experiments. Neutrinos interact with nuclei via charged or neut ral currents and both cases must be studied to obtain a complete information. We give an overview of the theoretical work that has been done to describe nuclear effects in neutral-current neutrin onucleus scattering in the kinematic region ranging between beam energies of a few hundreds MeV to a few GeV, which is typical of most ongoing and future accelerator-based neutrino experiments, and where quasielastic scattering is the main interaction mechanism. We review the current status and challenges of the theoretical models, the role and relevance of the contributions of different nuclear effects, and the present status of the comparison between the numerical predictions of the models as well as the available experimental data. We discuss also the sensitivity to the strange form factors of the nucleon and the methods and observables that can allow one to obtain evidence for a possible strange quark contribution from measurements of neutrino and antineutrino-nucleus scattering.
We study one pion production in both charged and neutral current neutrino nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results ar e incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pion production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of data, better for NC than for CC channels, although theory is systematically below data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie on the forward direction and at high energies.
We compare our pion production results with recent MiniBooNE data measured in mineral oil. Our total cross sections lie below experimental data for neutrino energies above 1 GeV. Differential cross sections show our model produces too few high energy pions in the forward direction as compared to data. The agreement with experiment improves by artificially removing pion final state interaction.
We study neutrino-induced charged-current (CC) $pi^0$ production on carbon nuclei using events with fully imaged final-state proton-$pi^0$ systems. Novel use of final-state correlations based on transverse kinematic imbalance enable the first measure ments of the struck nucleons Fermi motion, of the intranuclear momentum transfer (IMT) dynamics, and of the final-state hadronic momentum configuration in neutrino pion production. Event distributions are presented for i) the momenta of neutrino-struck neutrons below the Fermi surface, ii) the direction of missing transverse momentum characterizing the strength of IMT, and iii) proton-pion momentum imbalance with respect to the lepton scattering plane. The observed Fermi motion and IMT strength are compared to the previous MINERvA measurement of neutrino CC quasielastic-like production. The measured shapes and absolute rates of these distributions, as well as the cross-section asymmetries show tensions with predictions from current neutrino generator models.
We estimate the theoretical uncertainties of the model developed in Phys. Rev. C70 055503 for inclusive quasielastic charged-current neutrino-nucleus reactions at intermediate energies. Besides we quantify the deviations of the predictions of this ma ny body framework from those obtained within a simple Fermi gas model. An special attention has been paid to the ratio sigma(mu)/sigma(e) of interest for experiments on atmospheric neutrinos. We show that uncertainties affecting this ratio are likely smaller than 5%
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا